1. 	Журавлева А.А., Силкова О.Г. Дисомное замещение хромосом 3R(3B) приводит к комплексу аномалий в мейозе мягкой пшеницы Triticum aestivum L. Вавиловский журнал генетики и селекции. 2024;28(4):365-376. DOI: 10.18699/vjgb-24-42 EDN: RHXZLW 	
Zhuravleva А.А., Silkova О.G. Disomic chromosome 3R(3B) substitution causes a complex of meiotic abnormalities in bread wheat Triticum aestivum L. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(4):365-376. DOI: 10.18699/vjgb-24-42	
2. 	Силкова О.Г., Добровольская О.Б., Дубовец Н.И., Адонина И.Г., Кравцова Л.А., Родер М.С., Салина Е.А., Щапова А.И., Шумный В.К. Создание пшенично-ржаных замещенных линий с идентификацией хромосомного состава кариотипов методами С-бэндинга, GISH и SSR-маркеров. Генетика. 2006;42(6):793-802. EDN: HTOBJJ 	
Silkova O.G., Dobrovolskaya O.B., Dubovets N.I., Adonina I.G., Kravtsova L.A., Roeder M.S., Salina E.A., Shchapova A.I., Shumny V.K. Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers. Russ J Genet. 2006;42(6):645-653. DOI: 10.1134/S1022795406060093 EDN: LJROWL	
3. 	Симановский С.А., Богданов Ю.Ф. Генетический контроль мейоза у растений. Генетика. 2018;54(4):397-411. DOI: 10.7868/S0016675818040021 EDN: YWMRRE 	
Simanovsky S.A., Bogdanov Yu.F. Genetic control of meiosis in plants. Russ J Genet. 2018;54(4):389-402. DOI: 10.1134/S1022795418030122 EDN: XXSJNJ	
4. 	Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J.W., Elledge S.J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996;86(2):263-274. DOI: 10.1016/S0092-8674(00)80098-7 	
5. 	Chalupska D., Lee H.Y., Faris J.D., Evrard A., Chalhoub B., Haselkorn R., Gornicki P. Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA. 2008;105(28):9691-9696. DOI: 10.1073/pnas.0803981105 	
6. 	Darrier B., Colas I., Rimbert H., Choulet F., Bazile J., Sortais A., Jenczewski E., Sourdille P. location and identification on chromosome 3B of bread wheat of genes affecting chiasma number. Plants. 2022;11(17):2281. DOI: 10.3390/plants11172281 EDN: POXIKX 	
7. 	Devos K.M., Atkinson M.D., Chinoy C.N., Liu C.J., Gale M.D. RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet. 1992;83(8):931-939. DOI: 10.1007/BF00232953 EDN: CNNZOG 	
8. 	Dong Z., Ma C., Tian X., Zhu C., Wang G., Lv Y., Friebe B., Li H., Liu W. Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Sci Rep. 2020;10(1):4801. DOI: 10.1038/s41598-020-61888-1 EDN: EPNNWG 	
9. 	Endo T.R., Gill B.S. The deletion stocks of common wheat. J Hered. 1996;87(4):295-307. DOI: 10.1093/oxfordjournals.jhered.a023003 EDN: IROUZZ 	
10. 	Feldman R.M.R., Correll C.C., Kaplan K.B., Deshaies R.J. A complex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell. 1997;91(2):221-230. DOI: 10.1016/S0092-8674(00)80404-3 	
11. 	Gray W.M., del Pozo J.C., Walker L., Hobbie L., Risseeuw E., Banks T., Crosby W.L., Yang M., Ma H., Estelle M. Identification of an SCF ubiquitinligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 1999;13(13):1678-1691. DOI: 10.1101/gad.13.13.1678 	
12. 	Kerzendorfer C., Vignard J., Pedrosa-Harand A., Siwiec T., Akimcheva S., Jolivet S., Sablowski R., Armstrong S., Schweizer D., Mercier R., Schlögelhofer P. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci. 2006;119(12):2486-2496. DOI: 10.1242/jcs.02967 	
13. 	Lee Y.H., Larter E.N., Evans L.E. Meiotic behavior of wheat-rye addition and substitution lines. Crop Sci. 1970;10(2):144-145. DOI: 10.2135/cropsci1970.0011183X001000020006x 	
14. 	Li Y., Li Y., Zou X., Jiang S., Cao M., Chen F., Yin Y., Xiao W., Liu S., Guo X. Bioinformatic identification and expression analyses of the MAPK-MAP4K gene family reveal a putative functional MAP4K10-MAP3K7/8-MAP2K1/11-MAPK3/6 cascade in wheat (Triticum aestivum L.). Plants. 2024;13(7):941. DOI: 10.3390/plants13070941	
15. 	Marcussen T., Sandve S.R., Heier L., Spannagl M., Pfeifer M.; International Wheat Genome Sequencing Consortium; Jakobsen K.S., Wulff B.B., Steuernagel B., Mayer K.F., Olsen O.A. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014;345(6194):1250092. DOI: 10.1126/science.1250092 	
16. 	Martín A.C., Rey M.-D., Shaw P., Moore G. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma. 2017;126(6):669-680. DOI: 10.1007/s00412-017-0630-0 EDN: YFCHRD 	
17. 	Naranjo T. Forcing the shift of the crossover site to proximal regions in wheat chromosomes. Theor Appl Genet. 2015;128(9):1855-1863. DOI: 10.1007/s00122-015-2552-7 EDN: DDRZOX 	
18. 	Nayak S., Santiago F.E., Jin H., Lin D., Schedl T., Kipreos E.T. The Caenorhabditis elegans Skp1-related gene family. Curr Biol. 2002;12(4):277-287. DOI: 10.1016/S0960-9822(02)00682-6 	
19. 	Seal A.G., Bennett M.D. Preferential C-banding of wheat or rye chromosomes. Theor Appl Genet. 1982;63(3):227-233. DOI: 10.1007/BF00304000 EDN: VBGQPJ 	
20. 	Sears E.R. Cytogenetic studies with polyploid species of wheat. II. Additional chromosomal aberrations in Triticum vulgare. Genetics. 1944;29(3):232-246. DOI: 10.1093/genetics/29.3.232 	
21. 	Sears E.R. The aneuploids of common wheat. In: Research Bulletin No. 572. Agricultural Experiment Station, University of Missouri, Columbia, 1954;1-58. 	
22. 	Sears E.R., Sears L.M.S. The telocentric chromosomes of common wheat. In: Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, 23-28 February, 1978. New Delhi: Indian Agricultural Research Institute, 1979;389-407. 	
23. 	Skowyra D., Koepp D.M., Kamura T., Conrad M.N., Conaway R.C., Conaway J.W., Elledge S.J., Harper J.W. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science. 1999;284(5414):662-665. DOI: 10.1126/science.284.5414.662 EDN: DARUOP 	
24. 	Tsvetkov L.M., Yeh K.-H., Lee S.-J., Sun H., Zhang H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosp horylated Thr187 in p27. Curr Biol. 1999;9(12):661-664. DOI: 10.1016/S0960-9822(99)80290-5 	
25. 	Vavrdová T., Šamajová O., Křenek P., Ovečka M., Floková P., Šnaurová R., Šamaj J., Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. Plant Methods. 2019;15(1):22. DOI: 10.1186/s13007-019-0406-z EDN: LYLSAG 	
26. 	Wang Y., Yang M. The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein acts predominately from leptotene to pachytene and represses homologous recombination in male meiosis. Planta. 2006;223(3):613-617. DOI: 10.1007/s00425-005-0154-3 EDN: TUUSOO 	
27. 	Wang Y., Wu H., Liang G., Yang M. Defects in nucleolar migration and synapsis in male prophaseI in the ask11 mutant of Arabidopsis. Sex Plant Reprod. 2004;16(6):273-282. DOI: 10.1007/s00497-004-0206-z 	
28. 	Yang M., Ma H. Male meiotic spindle lengths in normal and mutant Arabidopsis cells. Plant Physiol. 2001;126(2):622-630. DOI: 10.1104/pp.126.2.622 	
29. 	Yang M., Hu Y., Lodhi M., McCombie W.R., Ma H. The Arabidopsis SKP1LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA. 1999;96(20):11416-11421. DOI: 10.1073/pnas.96.20.11416