Выполнен анализ содержания и эволюции коричневого углерода в дымах сибирских лесных пожаров по данным измерений абсорбционной аэрозольной оптической толщи (ААОТ) на трех российских станциях сети AERONET в Томске, Звенигороде и Екатеринбурге. Получены оценки относительного вклада мелкодисперсного коричневого углерода в абсорбцию солнечного излучения на длине волны 440 нм (hBrC), в том числе для ситуации аномального дальнего переноса дымов из Сибири в европейскую часть России летом 2016 г. Значительное содержание коричневого углерода обнаружено в дымах в Томске и Зеленограде (где значения hBrC равны в среднем 15 и 18%). При этом значимых величин hBrC в период прохождения дымов от сибирских пожаров над Екатеринбургом не обнаружено. Выявлено убывание hBrC по мере старения аэрозоля в освещенных условиях с характерным временным масштабом ~ 30 ч. В то же время результаты измерений в Звенигороде свидетельствуют об увеличении абсорбирующих свойств органической составляющей компоненты дымового аэрозоля при гораздо более длительной эволюции.
Идентификаторы и классификаторы
Ежегодно в мире, в том числе и в России, наблюдаются массовые природные пожары, одно из последствий которых поступление в атмосферу частиц дымового аэрозоля, оказывающего влияние на радиационный баланс атмосферы в различных регионах мира и на климатическую систему в целом [1-4]. Этим определяется интерес к изучению и моделированию изменений оптических характеристик атмосферы вследствие задымления продуктами горения, в частности от лесных пожаров в Сибири.
Список литературы
1. Van der Werf G.R., Randerson J.T., Giglio L., van Leeuwen T.T., Chen Y., Rogers B.M., Mu M., van Marle M.J.E., Morton D.C., Collatz G.J., Yokelson R.J., Kasibhatla P.S. Global fire emissions estimates during 1997-2016 // Earth Syst. Sci. Data. 2017. V. 9, N 2. P. 697-720. EDN: YIBIHG
2. Бондур В.Г., Гордо К.А., Кладов В.Л. Пространственно-временные распределения площадей природных пожаров и эмиссий углеродсодержащих газов и аэрозолей на территории Северной Евразии по данным космического мониторинга // Исследование Земли из космоса. 2016. № 6. С. 3-20. EDN: XGWDNH
3. Sand M., Berntsen T., von Salzen K., Flanner M., Langner J., Victor D. Response of Arctic temperature to changes in emissions of short-lived climate forcers // Nat. Clim. Change. 2015. N 6. P. 286-289. EDN: WVCIBP
4. Bond T.C., Doherty S.J., Fahey D.W. et al. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118, N 11. P. 5380- 5552. EDN: FOSIIA
5. Kozlov V.S., Panchenko M.V., Yausheva E.P. Mass fraction of Black Carbon in submicrometer aerosol as an indicator of influence of smokes from remote forest fires in Siberia // Atmos. Environ. 2008. V. 42, N 11. P. 2611-2620. EDN: LLGDWL
6. Chubarova N., Nezval’ Ye., Sviridenkov I., Smirnov A., Slutsker I. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010 // Atmos. Meas. Tech. 2012. V. 5, N 3. P. 557-568. EDN: NQEYLO
7. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012 // Int. J. Remote Sens. 2014. V. 35, N. 15. P. 5722-5741. EDN: UFASBZ
8. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. V. 10, N 1. P. 179-198. EDN: YUZPCX
9. Kozlov V.S., Yausheva E.P., Panchenko M.V., Shmargunov V.P. Annual behavior of Angstrom exponent of the aerosol absorption coefficients in the visible wavelength range upon the results of measurements at the Aerosol station of IAO SB RAS // Proc. SPIE. 2018. V. 10833. EDN: XEXDLO
10. Antokhin P.N., Arshinova V.G., Arshinov M.Y., Belan B.D., Belan S.B., Davydov D.K., Ivlev G.A., Fofonov A.V., Kozlov A.V., Paris J.-D., Nedelec P., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N. Distribution of trace gases and aerosols in the troposphere over Siberia during wildfires of summer 2012 // J. Geophys. Res.: Atmos. 2018. V. 123. P. 2285-2297.
11. Konovalov I.B., Lvova D.A., Beekmann M., Jethva H., Mikhailov E.F., Paris J.-D., Belan B.D., Kozlov V.S., Ciais P., Andreae M.O. Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths // Atmos. Chem. Phys. 2018. V. 18, N 20. P. 14889-14924. EDN: XNMSUC
12. Konovalov I.B., Beekmann M., Berezin E.V., Formenti P., Andreae M.O. Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide // Atmos. Chem. Phys. 2017. V. 17, N 7. P. 4513-4537. EDN: YVMDIL
13. Tsigaridis K., Kanakidou M. The present and future of secondary organic aerosol direct forcing on climate // Cur. Clim. Change Rep. 2018. V. 4, N 2. P. 84-98. EDN: VICLBU
14. Konovalov I.B., Beekmann M., Golovushkin N.A., Andreae M.O. Nonlinear behavior of organic aerosol in biomass burning plumes: A microphysical model analysis // Atmos. Chem. Phys. 2019. V. 19, N 19. P. 2091-12119. EDN: YDKVJE
15. Andreae M.O., Gelencsér A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols // Atmos. Chem. Phys. 2006. V. 6, N 10. P. 3131-3148. EDN: MGNXHX
16. Виноградова А.А., Смирнов Н.С., Коротков В.Н. Аномальные пожары 2010 и 2012 гг. на территории России и поступление черного углерода в Арктику // Оптика атмосф. и океана. 2016. Т. 26, № 6, С. 482-487.
17. Brown H., Liu X., Feng Y., Jiang Y., Wu M., Lu Z., Wu C., Murphy S., Pokhrel R. Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5) // Atmos. Chem. Phys. 2018. V. 18, N 24. P. 7745-17768. EDN: CKMCYY
18. Saleh R., Marks M., Heo J., Adams P.J., Donahue N.M., Robinson A.L. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions // J. Geophys. Res.: Atmos. 2015. V. 120, N 19. P. 10285-10296.
19. Wang X., Heald C.L., Liu J., Weber R.J., Campuzano-Jost P., Jimenez J.L., Schwarz J.P., Perring A.E. Exploring the observational constraints on the simulation of brown carbon // Atmos. Chem. Phys. 2018. V. 18, N 2. P. 635-653.
20. Pokhrel R.P., Beamesderfer E.R., Wagner N.L., Langridge J.M., Lack D.A., Jayarathne T., Stone E.A., Stockwell C.E., Yokelson R.J., Murphy S.M. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions // Atmos. Chem. Phys. 2017. V. 17, N 8. P. 5063-5078. EDN: FHUOCX
21. Горчаков Г.И., Карпов А.В., Панкратова Н.В., Семутникова Е.Г., Васильев А.В., Горчакова И.А. Коричневый и черный углерод в задымленной атмосфере при пожарах в бореальных лесах // Исследование Земли из космоса. 2017. № 3. С. 11-21. EDN: YTLUDR
22. Forrister H., Liu J., Scheuer E., Dibb., Ziemba L., Thornhill K.L., Anderson B., Diskin G., Perring A.E., Schwarz J.P., Campuzano-Jost P., Day D.A., Palm B.B., Jimenez J.L., Nenes A., Weber R.J. Evolution of brown carbon in wildfire plumes // Geophys. Res. Lett. 2015. V. 42, N 11. P. 4623-4630.
23. Zhong M., Jang M. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight // Atmos. Chem. Phys. 2014. V. 14, N 3. P. 1517-1525.
24. Wong J.P.S., Nenes A., Weber R.J. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging // Environ. Sci. Technol. 2017. V. 51, N 15. P. 8414-8421.
25. Fan X., Yu X., Wang Y., Xiao X., Li F., Xie Y., Wei S., Song J., Peng P. The aging behaviors of chromophoric biomass burning brown carbon during dark aqueous hydroxyl radical oxidation processes in laboratory studies // Atmos. Environ. 2019. V. 205. P. 9-18.
26. Bahadur R., Praveen P.S., Xu Y., Ramanathan V. Solar absorption by elemental and brown carbon determined from spectral observations // Proc. Nat.: Acad. Sci. USA. 2012. V. 109, N 43. P. 17366-17371.
27. Горчаков Г.И., Васильев А.В., Веричев К.С., Семутникова Е.Г., Карпов A.В. Тонкодисперсный коричневый углерод в задымленной атмосфере // Докл. АН. 2016. Т. 471, № 1. С. 91-97. EDN: SIOYXB
28. Wang X., Heald C.L., Sedlacek A.J., de Sá S.S., Martin S.T., Alexander M.L., Watson T.B., Aiken A.C., Springston S.R., Artaxo P. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and aethalometer observations // Atmos. Chem. Phys. 2016. V. 16, N 19. P. 12733-12752.
29. Ситнов С.A., Мохов И.И., Горчаков Г.И. Связь задымления атмосферы европейской территории россии летом 2016 года с лесными пожарами в Сибири и аномалиями атмосферной циркуляции // Докл. АН. 2017. Т. 472, № 4. С. 456-461. EDN: YKUMGR
30. Семутникова Е.Г., Горчаков Г.И., Ситнов С.А., Копейкин В.М., Карпов А.В., Горчакова И.А., Пономарева Т.Я., Исаков А.А., Гущин Р.А., Даценко О.И., Курбатов Г.А., Кузнецов Г.А. Сибирская дымная мгла над европейской территорией России в июле 2016 г. Загрязнение атмосферы и радиационные эффекты // Оптика атмосф. и океана. 2017. Т. 30, № 11. С. 962-970. EDN: ZRQNIF
31. Mailler S., Menut L., Khvorostyanov D., Valari M., Couvidat F., Siour G., Turquety S., Briant R., Tuccella P., Bessagnet B., Colette A., Letinois L., Markakis K., Mereux F. CHIMERE-2017: From urban to hemispheric chemistry transport modeling // Geosci. Model Dev. 2017. V. 10, N 6. P. 2397-2423.
32. Konovalov I.B., Berezin E.V., Ciais P., Broquet G., Beekmann M., Hadji-Lazaro J., Clerbaux C., Andreae M.O., Kaiser J.W., Schulze E.-D. Constraining CO2 emissions from open biomass burning by satellite observations of co-emitted species: A method and its application to wildfires in Siberia // Atmos. Chem. Phys. 2014. V. 14, N 19. P. 10383-10410. EDN: UEZXEX
33. Konovalov I.B., Lvova D.A., Beekmann M. Estimation of the elemental to organic carbon ratio in biomass burning aerosol using AERONET retrievals // Atmosphere. 2017. V. 8, N 7. P. 122. EDN: XOBPPJ
34. Wu C., Wu D., Yu J.Z. Quantifying black carbon light absorption enhancement with a novel statistical approach // Atmos. Chem. Phys. 2018. V. 18, N 1. P. 289-309. EDN: YENYFV
35. Barsanti K.C., Pankow J.F. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions - Part 1: Aldehydes and ketones // Atmos. Environ. 2004. V. 8, N 26. P. 4371- 4382.
36. Yousif E., Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: Review // Springerplus. 2013. V. 2. P. 398. EDN: YBQYOB
37. Tang H., Thompson J.E. Light-absorbing products form during the aqueous phase reaction of phenolic compounds in the presence of nitrate and nitrite with UV illumination // Open J. Air Pollut. 2012. V. 1, N 2. P. 13-21.
Выпуск
Другие статьи выпуска
Показано, что снег с ледовой поверхности озер, расположенных внутри верховых болот, пригоден для мониторинга стока «дальнего» аэрозоля на земную поверхность. По многолетним сведениям о концентрациях твердых и растворенных примесей в таких пробах снега с Барабинской и Васюганской равнин проведена оценка фона зимнего поступления аэрозольного вещества на юго-восток Западной Сибири. Обнаружено, что за счет дальнего переноса на 1 м2 поверхности здесь выпадает около 7 мг аэрозоля в сутки, в том числе в виде твердых частиц - 3,1 мг/м2 в сутки. Зимний сток атмосферных примесей не превышает 10% от годового стока, поэтому существенно не влияет на скорость осадконакопления. В составе твердых примесей стабильно преобладает зольная часть, средняя зольность - 65%. Минерализация талых снеговых вод с поверхности болотных озер близка к глобальному фону минерализации атмосферных осадков.
Исследуются статистические связи между содержанием черного углерода (black carbon - ВС) в столбе атмосферы и альбедо ( А ) подстилающей поверхности, величины которых получены из данных реанализа MERRA-2 для четырех тестовых районов вблизи арктического побережья России в апреле 2010-2016 гг. В анализ включены также метеопараметры атмосферы: температура воздуха, количество жидких и твердых осадков. Статистический анализ проводился по среднесуточным значениям параметров. Повышение температуры воздуха везде сопровождается понижением альбедо поверхности - как в масштабах месяца, так и в ежедневных вариациях. Осадки в виде свежего снега повышают альбедо поверхности. В целом за 7 лет значимая отрицательная корреляция между ВС и А в апреле обнаружена в Ненецком автономном округе и на Гыданском п-ове. Выявлены отдельные годы (в общем случае различные для разных районов), когда коррелируют межсуточные вариации А и ВС в пределах месяца, также с отрицательными коэффициентами. Оценены возможная изменчивость альбедо за счет вариаций разных параметров и изменения его радиационного форсинга.
Исследованы зонально осредненные поля сезонной и долговременной изменчивости общего содержания озона (ОСО), включая приполярные области. Показано, что долговременная изменчивость всех указанных рядов (с пространственным разрешением 3° широты) сводится к параметрическому резонансу с наименьшей из частот приливных колебаний (период 18,6 года). После исключения этого эффекта тренды рядов для всех широтных поясов становятся исчезающе малыми (имеющими разные знаки) и статистически незначимыми. Полученные результаты несовместимы с антропогенной версией «истощения озонового слоя». Указано, что обнаруженное явление параметрического резонанса наблюдается и в литосфере применительно к глобальной тектонической активности.
В работе анализируются изменения продолжительности солнечного сияния (ПСС) в Томске за период 1961-2018 гг. и отдельно за 1961-1990 и 1981-2010 гг. с использованием информации об облачности. Установлено, что фактическое значение средней многолетней месячной ПСС колеблется от 44 ч в декабре до 317 ч в июне - июле. Анализ многолетнего хода ПСС показал, что с 1961 до 1989 г. наблюдался рост, а с 1999 г. - уменьшение ПСС, обусловленное ростом балла нижней облачности и высокой повторяемостью сплошной облачности. В настоящее время ПСС в Томске увеличилась относительно исторического периода 1961-1990 гг. Получены уравнения регрессии между ПСС и суммарной солнечной радиацией, измеренной на TOR-станции ИОА СО РАН в период 1996-2018 гг.
В настоящее время только один классический метод учета рефракции в периоды спокойных изображений позволяет в значительной степени компенсировать ее влияние на результаты геодезических измерений. Однако период спокойных изображений очень мал, и его временные границы крайне сложно оценить. Поэтому, несмотря на многолетние усилия, проблема учета рефракции в геодезических измерениях до сих пор не решена. Благодаря проведенным исследованиям турбулентного метода получена точность определения рефракции, соответствующая инструментальной точности используемого прибора, даже в условиях неустойчивой температурной стратификации атмосферы, когда наблюдаются значительные флуктуации угла прихода пучка лазерного излучения. Исследования выполнены группой компаний «Геодезия и Строительство» совместно с кафедрой геодезии МИИГАиК.
Показано способ измерения мощности структурной характеристики флуктуаций показателя преломления C n 2 на основе данных двухканального турбулентного аэрозольного лидара, работающего на эффекте усиления обратного рассеяния (УОР). Предлагается использовать приближение В. В. Воробьева, которая для случаев проявления турбулентности определяет зависимость C n 2 от отношения эхосигналов. Основанием для этого являются экспериментальные данные, из которых следует, что эффект УОР возникает в относительно небольшой области пространства вблизи рассеивающего объема. Приведены результаты зондирования для горизонтальных трасс.
Теоретически исследуется задача о генерации второй гармоники (ГВГ) в одноосном нелинейном кристалле. Основное внимание уделено оценкам влияния величины волновой расстройки на эффективность ГВГ. Представленные результаты показывают, что оптимальное значение волновой расстройки существенным образом зависит и от мощности, и от выбранного способа фокусировки лазерного излучения в нелинейный кристалл. Предложен достаточно быстро реализуемый алгоритм численного решения задачи оптимизации волновой расстройки. Продемонстрирована возможность использования указанного алгоритма для анализа высокоэффективной ГВГ, включая ситуации, когда КПД нелинейного преобразования достигает своего максимального значения.
С помощью численного моделирования оценено влияние столкновительного уширения линий на точность восстановления профилей температуры тропосферы (0-11 км) из сигналов чисто вращательных Рамановских лидаров. Моделирование проводилось для трех наборов спектральных фильтров с разными полосами пропускания в приемной системе лидара. В качестве источника исходящего лидарного сигнала рассматривался узкополосный лазер с длиной волны 532 нм. В работе представлен сравнительный анализ ошибок восстановления температуры (ошибок калибровки) с использованием девяти калибровочных функций. Для каждого набора фильтров определена калибровочная функция, восстанавливающая температуру тропосферы с наименьшими ошибками.
С помощью перестраиваемого СО2-лазера измерены ненасыщенные коэффициенты поглощения в чистом СО2 и в бинарных газовых смесях CO2 с различными буферными газами (He, Ar, Kr, Xe, N2, O2, CO, N2O, 13C16O2) на центральных частотах линий R (8), R (22), R (34), P (8), P (22) и P (36) перехода 1000-0001 в температурном диапазоне 300-700 К. Описана методика и определены коэффициенты ударного самоуширения и ударного уширения буферными газами линий перехода молекул СО2. Показано, что эффективность взаимодействия CO2 с двух- и трехатомными газами определяется величиной электрического момента. При взаимодействии с инертными газами главную роль играет «массовый» фактор. Установлено, что температурные зависимости коэффициентов для чистого СО2 и всех буферных газов с высокой точностью могут быть аппроксимированы степенными функциями с двумя различными показателями.
Издательство
- Издательство
- СО РАН
- Регион
- Россия, Новосибирск
- Почтовый адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- Юр. адрес
- 630090, Новосибирская обл, г Новосибирск, Советский р-н, пр-кт Академика Лаврентьева, д 17
- ФИО
- Пармон Валентин Николаевич (ПРЕДСЕДАТЕЛЬ СО РАН)
- E-mail адрес
- sbras@sb-ras.ru
- Контактный телефон
- +7 (495) 9381848