The problem of finding equilibrium configurations of one-component charged particles, induced by external electrostatic fields in planar systems, is a subject of active studies in fundamental as well in experimental investigations. In this paper the results of numerical analysis of the equilibrium configurations of charged particles (electrons), confined in a circular region by an infinite external potential at its boundary are presented. Equilibrium configurations with minimal energy are searched by means of special calculation scheme. This computational scheme consists of the following steps. First, the configuration of the system with the energy as close as possible to the expected energy value in the ground equilibrium state is found using a model of stable configurations. Next, classical Newtonian molecular dynamics is used using viscous friction to bring the system into equilibrium with a minimum energy. With a sufficient number of runs, we obtain a stable configuration with an energy value as close as possible to the global minimum energy value for the ground stable state for a given number of particles. Our results demonstrate a significant efficiency of using the method of classical molecular dynamics (MD) when using the interpolation formulas in comparison with algorithms based on Monte Carlo methods and global optimization. This approach makes it possible to significantly increase the speed at which an equilibrium configuration is reached for an arbitrarily chosen number of particles compared to the Metropolis annealing simulation algorithm and other algorithms based on global optimization methods.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.