1. Boyd, J. P. Chebyshev and Fourier spectral methods second (Dover Books on Mathematics, 2013).
2. Mason, J. C. & Handscomb, D. C. Chebyshev polynomials doi:10 . 1201 / 9781420036114 (Chapman and Hall/CRC Press, New York, 2002).
3. Greengard, L. Spectral integration and two-point boundary value problems. SIAM Journal on Numerical Analysis 28, 1071–1080. doi:10.1137/0728057 (1991).
4. Shen, J., Tang, T. & Wang, L. Spectral methods doi:10.1007/978-3-540-71041-7 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011).
5. Fornberg, B. A practical guide to pseudospectral methods (Cambridge University Press, New York, 1996).
6. Sevastianov, L. A., Lovetskiy, K. P. & Kulyabov, D. S. Multistage collocation pseudo-spectral method for the solution of the first order linear ODE in VIII International Conference on Information Technology and Nanotechnology (ITNT) (2022), 1–6. doi:10.1109/ITNT55410.2022.9848731.
7. Sevastianov, L. A., Lovetskiy, K. P. & Kulyabov, D. S. A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics 23. in Russian, 36– 47. doi:10.18500/1816-9791-2023-23-1-36-47 (2023).
8. Lovetskiy, K. P., Kulyabov, D. S. & Hissein, W. Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order. Discrete and Continuous Models and Applied Computational Science 30, 127–138. doi:10. 22363/2658-4670-2022-30-2-127-138 (2022).
9. Sevastianov, L. A., Lovetskiy, K. P. & Kulyabov, D. S. Numerical integrating of highly oscillating functions: effective stable algorithms in case of linear phase 2021. doi:10.48550/arXiv.2104. 03653.
10. Lovetskiy, K. P., Kulyabov, D. S., Sevastianov, L. A. & Sergeev, S. V. Chebyshev collocation method for solving second order ODEs using integration matrices. Discrete and Continuous Models and Applied Computational Science 31, 150–163. doi:10.22363/2658-4670-2023-31-2-150-163 (2023).
11. Lienhard, J. H. I. & Lienhard, J. H. V. A heat transfer textbook fifth edition 2020.
12. Tikhonov, A. N. & Samarskii, A. A. Equations of Mathematical Physics (Nauka, M., 2004).
13. Sevastianov, L. A., Lovetskiy, K. P. & Kulyabov, D. S. A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics 23, 36–47. doi:10. 18500/1816-9791-2023-23-1-36-47 (2023).
14. Stewart, G. W. Afternotes on numerical analysis (Society for Industrial and Applied Mathematics, USA, 1996).
15. Amiraslani, A., Corless, R. M. & Gunasingam, M. Differentiation matrices for univariate polynomials. Numerical Algorithms 83, 1–31. doi:10.1007/s11075-019-00668-z (2020).
16. Rezaei, F., Hadizadeh, M., Corless, R. & Amiraslani, A. Structural analysis of matrix integration operators in polynomial bases. Banach Journal of Mathematical Analysis 16, 5. doi:10.1007/ s43037-021-00156-4 (2022).
17. Boyce, W. E. & DiPrima, R. C. Elementary differential equations and boundary value problems 9th Edition (Wiley, New York, 2009).
18. Planitz, M. et al. Numerical recipes: the art of scientific computing 3rd Edition (Cambridge University Press, New York, 2007).