1. Gross, D., Shortle, J. F., Thompson, J. M. & Harris, C. M. Fundamentals of queueing theory (John wiley & sons, 2011).
2. G.Gosztony. Repeated call attempts and their effect on trafic engineering. Budavox Telecommunication Review 2, 16–26 (1976).
3. Cohen, J. Basic problems of telephone traffic theory and the influence of repeated calls. Philips Telecommunication Rev. 18, 49 (1957).
4. Hanczewski, S., Stasiak, M., Weissenberg, J. & Zwierzykowski, P. Queuing model of the access system in the packet network in Computer Networks (2016), 283–293.
5. Falin, G. I. & Templeton, J. G. C. Retrial Queues 320 pp. doi:10.1201/9780203740767 (Chapman & Hall, London, 1997).
6. Artalejo, J. R. & Gómez-Corral, A. Retrial Queueing Systems doi:10.1007/978-3-540-78725-9 (Springer Berlin Heidelberg, 2008).
7. Dimitriou, I. A queueing model with two classes of retrial customers and paired services. Annals of Operations Research 238, 123–143. doi:10.1007/s10479-015-2059-2 (2016).
8. Wang, J., Cao, J. & Li, Q. Reliability analysis of the retrial queue with server breakdowns and repairs. Queueing Systems 38, 363–380 (2001).
9. Kumar, M. S. & Arumuganathan, R. An MX/G/1 retrial queue with two-phase service subject to active server breakdowns and two types of repair. International Journal of Operational Research 8, 261–291 (2010).
10. Kim, C., Klimenok, V. I. & Orlovsky, D. S. The BMAP/PH/N retrial queue with Markovian flow of breakdowns. European Journal of Operational Research 189, 1057–1072 (2008).
11. Lakaour, L., Aissani, D., Adel-Aissanou, K., Barkaoui, K. & Ziani, S. An unreliable single server retrial queue with collisions and transmission errors. Communications in Statistics-Theory and Methods 51, 1085–1109 (2022).
12. Danilyuk, E. Y., Janos, S., et al. Asymptotic analysis of retrial queueing system M/M/1 with impatient customers, collisions and unreliable server. Journal of Siberian Federal University. Mathematics & Physics 13, 218–230. doi:10.17516/1997-1397-2020-13-2-218-230 (2020).
13. Tóth, Á. & Sztrik, J. Simulation of Finite-Source Retrial Queuing Systems With Collisions, Non-Reliable Server and Impatient Customers in the Orbit. in ICAI (2020), 408–419.
14. Kuki, A., Bérczes, T., Sztrik, J. & Kvach, A. Numerical Analysis of Retrial Queueing Systems with Conflict of Customers and an Unreliable Server. Journal of Mathematical Sciences 237, 673–683. doi:10.1007/s10958-019-04193-1 (2019).
15. Nazarov, A. A., Paul, S. V. & Lizyura, O. D. Two-way communication retrial queue with unreliable server and multiple types of outgoing calls. Discrete and Continuous Models and Applied Computational Science 28, 49–61. doi:10.22363/2658-4670-2020-28-1-49-61 (2020).
16. Dudin, A., Dudina, O., Dudin, S. & Samouylov, K. Analysis of Single-Server Multi-Class Queue with Unreliable Service, Batch Correlated Arrivals, Customers Impatience, and Dynamical Change of Priorities. Mathematics 9, 1257. doi:10.3390/math9111257 (2021).
17. Chakravarthy, S. R., OZKAR, S. & SHRUTI, S. Analysis of M/M/C retrial queue with thresholds, PH distribution of retrial times and unreliable servers. Journal of applied mathematics & informatics 39, 173–196 (2021).
18. Falin, G. An M/G/1 retrial queue with an unreliable server and general repair times. Performance Evaluation 67, 569–582 (2010).
19. Dudin, A., Klimenok, V. & Vishnevsky, V. Analysis of unreliable single server queueing system with hot back-up server in Optimization in the Natural Sciences: 30th Euro Mini-Conference, EmC-ONS 2014, Aveiro, Portugal, February 5-9, 2014. Revised Selected Papers 30 (2015), 149–161.
20. Nazarov, A. A., Paul, S. V., Lizyura, O. D., et al. Two-way communication retrial queue with unreliable server and multiple types of outgoing calls. Discrete and Continuous Models and Applied Computational Science. doi:10.22363/2658-4670-2020-28-1-49-61 (2020).
21. Voronina, N. M., Fedorova, E. A. & Rozhkova, S. V. Asymptotic analysis of the RQ-system M/M/1 with an unreliable server. Mathematical and software for information technical and economic systems, 304–309. doi:10.1007/978-3-031-09331-9_28 (2020).