1. Mogilevskii, I. E. & Sveshnikov, A. G. Mathematical problems of diffraction theory Russian. In Russian (MSU, Moscow, 2010).
2. Karliner, M. M. Microwave electrodynamics: Course of lectures (NSU, Novosibirsk, 2006).
3. Samarskii, A. A. & Tikhonov, A. N. Russian. To the theory of excitation of radiowaveguides in Selected works of A. A. Samarsky In Russian. Chap. 1 (Maks Press, Moscow, 2003).
4. Chow, V. T. Handbook of Applied Hydrology, McGraw-Hill, New York, 1964. (1964).
5. Tikhonov, A. N. & Samarskii, A. A. Equations of mathematical physics Russian (Dover Publications, New York, 1990).
6. Bermfidez, A. & Pedreira, D. G. Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides. Numer. Math. 61, 39–57 (1992).
7. Lezar, E. & Davidson, D. B. Electromagnetic waveguide analysis in Automated solution of differential equations by the finite element method 629–643 (The FEniCS Project, 2011).
8. Novoselov, N. A., Raevsky, S. B. & Titarenko, A. A. Calculation of symmetrical wave propagation characteristics of a circular waveguide with radially inhomogeneous dielectric filling. Russian. Proceedings of the Nizhny Novgorod State Technical University named after R.E. Alekseev. In Russian,30–38 (2010).
9. Delitsyn, A. L. On the completeness of the system of eigenvectors of electromagnetic waveguides. Comput. Math. and Math. Phys. 51, 1771–1776 (2011).
10. Delitsyn, A. L. & Kruglov, S. I. Mixed finite elements used to analyze the real and complex modes of cylindrical waveguides. Russian. Moscow University Physics Bulletin 66, 546 (2011).
11. Delitsyn, A. L. & Kruglov, S. I. Application of mixed finite element method for calculation of modes of cylindrical waveguides with variable refractive index. Journal of Radio Electronics. In Russian, 1–28 (2012).
12. Keldysh, M. V. Russian. On the completeness of the eigenfunctions of some classes of non-self-adjoint linear operators in Selected writings. Mathematics. In Russian. Chap. 31 (Nauka, Moscow, 1985).
13. Gohberg, I. & Krein, M. Introduction to the Theory of Linear Nonselfadjoint Operators (American Mathematical Soc., Providence, Rhode Island, 1969).
14. Markus, A. S. Introduction to the Spectral Theory of Polynomial Operator Pencils (American Mathematical Society, Providence, R.I., 1988).
15. Kopachevsky, N. D. Spectral Theory of Operator Pencils: Special Course of Lectures (Forma, Simferopol’, 2009).
16. Smirnov, Y. G. Completeness of the system of eigen- and associated waves of a partially filled waveguide with an irregular boundary. Dokl. Math. 32, 963–964 (1987).
17. Smirnov, Y. G. The application of the operator pencil method in a problem concerning the natural waves of a partially filled wave guide. Dokl. Math. 35, 430–431 (1990).
18. Smirnov, Y. G. The method of operator pencils in boundary value problems of conjugation for a system of elliptic equations. Differ. Equ. 27, 112–118 (1991).
19. Shestopalov, Y. & Smirnov, Y. Eigenwaves in waveguides with dielectric inclusions: spectrum. Applicable Analysis 93, 408–427. doi:10.1080/00036811.2013.778980 (2014).
20. Bogolyubov, A. N., Delitsyn, A. L. & Sveshnikov, A. G. On the completeness of the set of eigenand associated functions of a waveguide. Comput. Math. Math. Phys. 38, 1815–1823 (1998).
21. Bogolyubov, A. N., Delitsyn, A. L. & Sveshnikov, A. G. On the problem of excitation of a waveguide filled with an inhomogeneous medium. Comput. Math. Math. Phys. 39, 1794–1813 (1999).
22. Delitsyn, A. L. An approach to the completeness of normal waves in a waveguide with magnetodielectric filling. Differ. Equ. 36, 695–700 (2000).
23. Bogolyubov, A. N., Delitsyn, A. L., Malykh, M. D. & Sveshnikov, A. G. The basis property of root vectors for the radio waveguide. Moscow University Physics Bulletin 55, 22 (2000).
24. Bogolyubov, A. N., Delitsyn, A. L. & Malykh, M. D. On the root vectors of a cylindrical waveguide. Comput. Math. Math. Phys. 41, 121–124 (2001).
25. Kroytor, O. K. & Malykh, M. D. On a dispersion curve of a waveguide filled with inhomogeneous substance. Discrete and Continuous Models and Applied Computational Science 30, 330–341 (2022).