В статье демонстрируются результаты моделирования условного предела текучести в трубных сталях после термообработки улучшением. Описываются основные типы моделей, использующиеся в работе, обобщается информация о плюсах и минусах разных подходов к моделированию целевой переменной. Приводятся эмпирические уравнения связи твердости, предела текучести и предела прочности. Указывается роль параметра n в приведенных уравнениях. Объясняются причины выбора применяемого набора независимых переменных в моделях. Показывается распределение целевой переменной в выборке данных, приводится информация о признаковом пространстве, использованном для каждой из рассмотренных моделей. Представлено общее описание исходных данных. Исследуется структура основной выборки данных с помощью метода кластеризации DBSCAN и алгоритма снижения размерности t-SNE. Обосновывается причина дробления выборки на кластеры в контексте снижения разброса прогнозируемой величины условного предела текучести. Оценивается эффективность разбиения выборки с помощью меры разброса введенного параметра n. Проводится сравнение различных регрессионных моделей прогнозирования предела текучести. Показы-вается, что регрессионная модель на основе градиентного бустинга над деревьями решений (LightGBM) имеет наименьшую ошибку прогнозирования среди рассмотренных моделей. Определяется перестановочная значимость признаков модели с наименьшей ошибкой прогнозирования, приводится сравнение вычисленной значимости признаков с данными метал-лургической теории. Оценивается валидность полученных моделей прогнозирования с учетом значимости признаков и метрической оценки, используемой в данной работе. Проверяется гипотеза об использовании проксипеременной (параметра n), полученной на основе теоретических выкладок, в качестве предиктора модели предсказания предела текучести. Демонстрируется, что использование метода группировки совместно с параметром n позволяет получать удовлетворительные результаты прогнозирования на меньшем признаковом пространстве.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.