1. A high-bias, low-variance introduction to Machine Learning for physicists / P. Mehta [et al.] // Physics Reports. - 2019. - Vol. 810. - Pp. 1-124. -. DOI: 10.1016/j.physrep.2019.03.001 EDN: WZCLUH
2. Machine learning and the physical sciences / G. Carleo [et al.] // Reviews of modern physics. - 2019. - Vol. 91. - No 4. -. DOI: 10.1103/RevModPhys.91.045002 EDN: COYYAJ
3. AI for Next Generation Computing: Emerging Trends and Future Directions / S. S. Gill [et. al.] // arXive.org e-Print archive. - arXiv:2203.04159v1 [cs.DC] 5 Mar 2022.
4. Coles P. Thermodynamic AI and the uctuation frontier // arXive.org e-Print archive. - arXiv:2302.06584v1 [cs.ET] 9 Feb 2023.
5. Intelligent Computing: The Latest Advances, Challenges and Future / Sh. Zhu [et al.] // arXive.org e-Print archive. - arXiv:2211.11281v1 [cs.AI] 21 Nov 2022.
6. Jha R. G. Notes on Quantum Computation and information // arXive.org e-Print archive. - arXiv:2301.09679v1 [quant-ph] 23 Jan 2023.
7. Dunjko V. Briegel H.J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress // Reports on Progress in Physics. - 2018. - Vol. 81. - No 7. - Pp. 074001.-. DOI: 10.1088/1361-6633/aab406 EDN: MCVKNV
8. Carrasquilla J. Machine learning for quantum matter // Advances in Physics X. - 2020. - Vol. 5. - No 1. - Pp. 1797528. -. DOI: 10.1080/23746149.2020.1797528 EDN: HQTPYP
9. Wittek P. Quantum Machine Learning: What Quantum Computing Means to Data Mining. - Elsevier. - 2014.
10. Quantum machine learning for chemistry and physics / M. Sajjan [et al.] // Chemical Society Reviews. - 2022. - Vol. 51. - Pp. 6475. -. DOI: 10.1039/d2cs00203e EDN: BHXARE
11. Haney B.S. Quantum machine learning: a patent review // JOURNAL OF LAW, TECHNOLOGY & THE INTERNET. - 2021. - Vol. 12 - No. 5.
12. Potential Applications of Quantum Computing at Los Alamos National Laboratory v0.1.0 / A. Bärtschi [et al.] // arXive.org e-Print archive. - arXiv: 2406.06625v1 [quant-ph] 7 Jun 2024.
13. Carlesso M. Lecture Notes on Quantum Algorithms in Open Quantum Systems // arXive.org e-Print archive. - arXiv:2406.11613v1 [quant-ph] 17 Jun 2024.
14. sQUlearn - A Python Library for Quantum Machine Learning / D. A. Kreplin [et al.] // arXive.org e-Print archive. - arXiv:2311.08990v1 [quant-ph] 15 Nov 2023.
15. Sahu H., Gupta H. P. Quantum Computing Toolkit From Nuts and Bolts to Sack of Tools // arXive.org e-Print archive. - arXiv:2302.08884v1 [quant-ph] 17 Feb 2023.
16. A Herculean task: Classical simulation of quantum computers / X. Xu [et al.] // arXive.org e-Print archive. - arXiv:2302.08880v1 [quant-ph] 17 Feb 2023.
17. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future/ S. J. Nawaz [et al.] // IEEE Access. - 2019. - Vol.7. - Pp. 46317-46350. -. DOI: 10.1109/ACCESS.2019.2909490 EDN: IQLETB
18. Bötticher A., Seskir Z. C., Ruhland J.Introducing a Research Program for Quantum Humanities - Theoretical Implications // arXive.org e-Print archive. - arXiv:2212.12947 [physics.soc-ph] 25 Dec 2022.
19. Chen S.Y.-C., Yoo S. Federated Quantum Machine Learning // Entropy. - 2021. - Vol. 23. - No 4. - Pp. 460. -. DOI: 10.3390/e23040460 EDN: MGQEQQ
20. Quantum Federated Learning Experiments in the Cloud with Data Encoding / Sh. R. Pokhrel [et al.] // arXive.org e-Print archive. - arXiv:2405.00909v1 [cs.LG] 1 May 2024.
21. Quantum Distributed Deep Learning Architectures: Models, Discussions, and Applications / Y. Kwak [et al. // arXive.org e-Print archive. - arXiv:2202.11200v3 [quant-ph] 7 Apr 2022.
22. Abbas Ф. еt al. The power of quantum neural networks // Nature computational science. - 2021. - Vol. 1. - Pp. 403-409. -. DOI: 10.1038/s43588-021-00084-1 EDN: ABBFUF
23. Oh S., Choi J., Kim J. A Tutorial on Quantum Convolutional Neural Networks (QCNN) // arXive.org e-Print archive. - arXiv:2009.09423v1 [quant-ph] 20 Sep 2020.
24. A Review of Barren Plateaus in Variational Quantum Computing / M. Larocca [et al.] // arXive.org e-Print archive. - arXiv:2405.00781v1 [quant-ph] 1 May 2024.
25. TensorFlow Quantum: A Software Framework for Quantum Machine Learning / M. Broughton [et al.] // arXive.org e-Print archive. - arXiv:2003.02989v2 [quant-ph] 26 Aug 2021.
26. Quantum Federated Learning with Entanglement Controlled Circuits and Superposition Coding / W. J. Yun [et al.] // arXive.org e-Print archive. - arXiv:2212.01732v1 [quant-ph] 4 Dec 2022.
27. Tensor Circuit: a Quantum Software Framework for the NISQ Era / S.-X. Zhang [et al.] // arXive.org e-Print archive. - arXiv:2205.10091v2 [quant-ph] 27 Jan 2023.
28. Kulkarni V., Pawale S., Kharat A. A Classical-Quantum Convolutional Neural Network for Detecting Pneumonia from Chest Radiographs // arXive.org e-Print archive. - arXiv:2202.10452v1 [cs.CV] 19 Feb 2022.
29. Hur T., Araujo I. F., Park D. K. Neural Quantum Embedding: Pushing the Limits of Quantum Supervised Learning // arXive.org e-Print archive. - arXiv:2311.11412v1 [quant-ph] 19 Nov 2023.
30. Nguyen N., Chen K.-C. Quantum Embedding Search for Quantum Machine Learning // arXive.org e-Print archive. - arXiv:2105.11853v1 [quant-ph] 25 May 2021.
31. Explainable Quantum Machine Learning / R. Heese [et al.] // arXive.org e-Print archive. - arXiv:2301.09138v1 [quant-ph] 22 Jan 2023.
32. Quantum Machine Learning: Foundation, New Techniques, and Opportunities for Database Research / T. Winker [et al.] // SIGMOD-Companion ’23, June 18-23, 2023, Seattle, WA, USA. - 2023. - Pp. 45-52. -. DOI: 10.1145/3555041.3589404
33. Li Weikang, Lu Zhide, Deng Dong-Ling. Quantum neural network classi ers: A tutorial // SciPost Physics Lecture Notes. - 2022. - Vol. 61. -. DOI: 10.21468/SciPostPhysLectNotes.61
34. Generative Modeling with Quantum Neurons / K. Gili, R. S. Kumar, M. Sveistrys, C. J. Ballance // arXive.org e-Print archive. - arXiv:2302.00788v1 [quant-ph] 1 Feb 2023.
35. Gili K., Sveistrys M., Balance C.Introducing Non-Linear Activations into Quantum Generative Models // arXive.org e-Print archive. - arXiv:2205.14506v4 [quant-ph] 8 Dec 2022.
36. A Survey on Quantum Reinforcement Learning / N. Meyer [et al.] // arXive.org e-Print archive. - arXiv:2211.03464v1 [quant-ph] 7 Nov 2022.
37. Variational quantum algorithms / M. Cerezo [et al.] // Nature reviews physics. - 2021. - Vol. 3. - Pp. 625-644. -. DOI: 10.1038/s42254-021-00348-9 EDN: YHENTA
38. Noisy intermediate-scale quantum algorithms / K. Bharti [et al.] // Reviews of Modern Physics. - 2022. - Vol. 94. - No 1. - Pp. 015004-1-015004-69. -. DOI: 10.1103/RevModPhys.94.015004 EDN: PXMLJX