1. Esgify: Автоматизированная классификация экологических, социальных и управленческих рисков / А. Казаков, С. Денисова, И. Барсола, Е. Калугина, И. Молчанова, И. Егоров, А. Костерина, Е. Терещенко, Л. Шутихина, И. Дорощенко, Н. Сотириади, С. Будённый // Доклады Российской академии наук. Математика, Информатика, Процессы Управления. 2023. Т. 514, № 2. С. 417-430. DOI: 10.1134/S1064562423701673 EDN: CXCFVV
2. Aiba, Y., Ito T., Ibe Y.Network Structure in ESG Ratings Suggests New Corporate Strategies: Evolving AI Technology to Quantify Qualitative Data // Security Analysts Journal. 2020. Vol. 16. P. 3-15.
3. Angelov D. Top2Vec: Distributed Representations of Topics. 2020. http://arxiv.org/abs/2008.09470.
4. Mining Impacts of CSR Disclosure on Firm Performance / T.-T. Cheng, Y.-H. Tsai, Ch. Lai, S.-Y. Hwang // PACIS 2023 Proceedings. 2023. P. 188.
5. Dyer J. S. Maut - Multiattribute Utility Theory // Multiple Criteria Decision Analysis: State of the Art Surveys. 2023. New York: Springer-Verlag. Vol. 78. P. 265-292. DOI: 10.1007/0-387-23081-5_7
6. ESG Transparency and Sustainability Management Methodology. Frankfut am Main: RAEX, 2022. 11 p.
7. Hua Yu, Yang J. A Direct LDA Algorithm for High-Dimensional Data - with Application to Face Recognition // Pattern Recognition. 2001. Vol. 34, N 10. P. 2067-2070. DOI: 10.1016/S0031-3203(00)00162-X EDN: BDLPNL
8. Exploring Topic Coherence over Many Models and Many Topics / S. Keith, Ph. Kegelmeyer, D. Andrzejewski, D. Buttler // Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2012. P. 952-961.
9. Social Responsibility Portfolio Optimization Incorporating ESG Criteria / Ch. Li, Zh. Lipei, Hu. Jun, X. Helu, Zh. Zhongbao // Journal of Management Science and Engineering. 2021. Vol. 6, N 1. P. 75-85. DOI: 10.1016/j.jmse.2021.02.005 EDN: DXJYRS
10. Marcelo G.-B., Espinosa-Leal L. Natural Language Processing Methods for Scoring Sustainability Reports-A Study of Nordic Listed Companies // Sustainability. 2022. Vol. 14, N 15. P. 9165. DOI: 10.3390/su14159165 EDN: UWBTLJ
11. Natraj R., Bang G., Nourbakhsh A. Mapping ESG Trends by Distant Supervision of Neural Language Models // Machine Learning and Knowledge Extraction. 2020. Vol. 2, N 4. P. 453-68. DOI: 10.3390/make2040025 EDN: XMMGYI
12. Ning Zh., Zhang Yu., Zong Zh. Fund ESG Performance and Downside Risk: Evidence from China // International Review of Financial Analysis. 2023. Vol. 86. P. 102526. DOI: 10.1016/j.irfa.2023.102526 EDN: UXHZMX
13. Bridging the Gap in ESG Measurement: Using NLP to Quantify Environmental, Social, and Governance Communication / T. Schimanski, A. Reding, N. Reding, Ju. Bingler, M. Kraus, M. Leippold // Finance Research Letters. 2024. Vol. 61. P. 104979. DOI: 10.1016/j.frl.2024.104979 EDN: XRGHKC
14. The Impact of Environmental Innovation and National Culture on ESG Practices: A Study of Latin American Companies / P. V. S. Souza, K. Dalcero, D. Demarche, M. Ferreira, E. Paulo // Academia Revista Latinoamericana de Administracion. 2024. DOI: 10.1108/ARLA-11-2023-0187 EDN: JXKJVD
15. Sirimon T., Suttipun M. The Impact of Environmental, Social and Governance (ESG) Reporting on Corporate Pro tability: Evidence from Thailand // Journal of Financial Reporting and Accounting. 2024. N 61. P. 89-111. DOI: 10.1108/JFRA-09-2023-0555 EDN: YOHVFE
16. Takuya K., Nozaki M. A Text Mining Model to Evaluate Firms’ ESG Activities: An Application for Japanese Firms // Asia-Paci c Financial Markets. 2020. Vol. 27, N 4. P. 621-632. DOI: 10.1007/s10690-020-09309-1
17. Tremblay M. Ch., Parra C., Castellanos A. Analyzing Corporate Social Responsibility Reports Using Unsupervised and Supervised Text Data Mining // Lecture Notes in Computer Science. 2015. Vol. 9073. P. 439-46. DOI: 10.1007/978-3-319-18714-3_36
18. Who Cares Wins (Connecting Financial Marketsto a Changing World). NewYork: United Nations, 2004. 41 p.