Рассматриваются ациклические графы, аппроксимируемые конечными ациклическими графами. Доказано, что любой счетно категоричный ациклический граф гладко аппроксимируем. Приведен пример псевдоконечной ациклической теории графов, имеющей четное, нечетное и бесконечное число лучей.
Идентификаторы и классификаторы
This note continues the research begun in [8], about approximations of the theories [14] of acyclic graphs. Let us remind you that a pseudofinite graph is an infinite graph that satisfies every first order sentence in a language L = {=, R} that is true for some finite graphs. Recently, pseudofinite graphs have been actively studied by various authors in various fields. In [15], graphs interpreted in pseudofinite fields were studied. The papers [16; 17] introduce various ultraflat Hrushovski-Fra¨ıss´e classes of acyclic graphs whose limits are strictly superstable and pseudofinite. In [10], generic pseudofinite graph theories are noted. Tao’s work [15] concerns graphs definable in (pseudo)finite fields.
Список литературы
1. Garcia D., Robles M. Pseudofiniteness and measurability of the everywhere infinite forest. arXiv:2309.00991, 2023. DOI: 10.48550/arXiv.2309.00991
2. Grinberg D. An introduction to graph theory. arXiv:2308.04512, 2023. DOI: 10.48550/arXiv.2308.04512
3. Herre Heinrich, Mekler Allan, Smith Kenneth. Superstable graphs. Fundamenta Mathematicae, 1983, vol. 118 no. 2, pp. 75-79.
4. Ivanov A. The structure of superflat graphs. Fundamenta Mathematicae, 1993, vol. 143, no. 2, pp. 107-117.
5. Kantor W.M., Liebeck M.W., Macpherson H.D. ℵ0-categorical structures smoothly approximated by finite substructures. Proc. London Math. Soc., 1989, vol. 59, pp. 439-463. DOI: 10.1112/plms/s3-59.3.439
6. Malyshev S. B. Kinds of Pregeometries of Acyclic Theories. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 46, pp. 110-120. DOI: 10.26516/1997-7670.2023.46.110
7. Marker D. Model Theory: An Introduction. Graduate Texts in Mathematics, vol. New York, Berlin and Heidelberg, Springer Verlag Publ., 2002, 342 p.
8. Markhabatov N. D. Approximations of Acyclic Graphs. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 40, pp. 104-111. DOI: 10.26516/1997-7670.2022.40.104
9. Markhabatov N. D., Sudoplatov S. V., Approximations of Regular Graphs, Herald of the Kazakh-British Technical University, 2022, vol.19, no. 1, pp. 44-49. DOI: 10.55452/1998-6688-2022-19-1-44-49 EDN: FUPRUY
10. Myasnikov, A.G., Remeslennikov, V.N. Generic Theories as a Method for Approximating Elementary Theories. Algebra and Logic, 2015, vol. 53, pp. 512-519. DOI: 10.1007/S10469-015-9314-0 EDN: XFHISN
11. Nurtazin A.T. Graphs and Models with finite chains, Siberian Electronic Mathematical Reports, 2007, vol. 4, pp. 238-248.
12. Ovchinnikova E.V., Shishmarev Yu.E. Countably categorical graphs, Ninth All-Union Conference on Mathematical Logic. Leningrad, 1988, September 27-29, dedicated to the 85th anniversary of Corresponding Member of the USSR Academy of Sciences A.A. Markov, p.120.
13. Podewski K.-P., Ziegler M. Stable graphs. Fundamenta Mathematicae, 1978, vol. 100, no. 2, pp. 101-107.
14. Sudoplatov S. V. Approximations of theories. Siberian Electronic Mathematical Reports, 2020, vol.17, pp. 715-725. EDN: OMITRP
15. Tao T. Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets. Contributions to Discrete Mathematics, 2014, vol. 10, no. 1, pp. 22-98.
16. Valizadeh A.N., Pourmahdian M. Pseudofiniteness in Hrushovski Constructions. Notre Dame J. Formal Log., 2020, vol. 61, pp. 1-10. DOI: 10.1215/00294527-2019-0038 EDN: PXOZTH
17. Valizadeh A.N., Pourmahdian M. Strict Superstablity and Decidability of Certain Generic Graphs. Bull. Iran. Math. Soc., 2019, vol. 45, pp. 1839-1854. DOI: 10.1007/s41980-019-00234-2 EDN: EQQZJM
18. Woodrow R.E. Theories with a finite number of countable models and a small language. Ph. D. Thesis. Simon Fraser University, 1976, 99 p.
Выпуск
Другие статьи выпуска
Дан краткий обзор основных направлений научной деятельности А. С. Апарцина в развитии теории неустойчивых задач вычислительной математики. Приведены теоретические и прикладные результаты исследований его коллег и учеников.
Задание базовых правил вывода имеет фундаментальное значение для логики. Наиболее общим вариантом возможных правил вывода являются допустимые правила вывода: в логике
Результаты исследования относятся к следующей задаче: найти естественные конечные фильтрующие элементы данной линейной группы над конечно порожденным коммутативным кольцом. Особый интерес вызывает кольца коэффициентов, которые являются частью одного элемента, например кольцо целых чисел или кольцо целых гауссовых чисел. Доказано, что проективная общая линейная группность n над кольцами целых гауссовых чисел тогда и только тогда по возникновению событий инволюциями, два из которых перестановочны, когда n больше 4 и 4 размер не делит n. Ранее М. А. Всемирнов, Р. И. Гвоздев, Д. В. Левчук и авторы данной статьи разработали аналогичную задачу для предварительной и проективной обработки линейных групп.
Актуальность исследования обусловлена сложностью оценки экологической и социальной ответственности компаний в условиях ограниченного времени и сведений о них, а также возможностью автоматического сбора информации из открытых источников. Использованы методы автоматического выделения топиков из текстовых данных, методы машинного обучения и многокритериального ранжирования, сопоставительный и экспертный анализ получаемых результатов. Для проведения экспериментов было собрано более 1200 отчетов ведущих российских компаний за период 2019-2022 гг., а также использовались новости, размещенные на сайте Forbes. ru. Разработана модель и методика ее применения для анализа текстовой информации о группе компаний для их ранжирования. Проведен качественный и количественный анализ, показывающий неслучайный и обоснованный характер получаемых результатов. Показана эффективность предложенной модели для выбора компаний путем ранжирования ограниченного их перечня на основе доступной текстовой информации.
Строятся частичные группоиды, ассоциированные с композициями многослойных нейронных сетей прямого распределения сигнала (далее - нейронные сети). Элементами данных группоидов являются кортежи специального вида. Задание такого кортежа определяет структуру (т. е. архитектуру) нейронной сети. Каждому такому кортежу можно сопоставить отображение, которое будет реализовывать работу нейронной сети как вычислительной схемы. Таким образом, в данной работе нейронная сеть отождествляется в первую очередь со своей архитектурой, а ее работу реализует отображение, которое строится с помощью модели искусственного нейрона. Частичная операция в построенных группоидах устроена так, что результат ее применения (если он определен) к паре нейронных сетей дает нейронную сеть, которая на каждом входном сигнале действует в соответствии с принципом композиции нейронных сетей (т. е. выходной сигнал одной сети отправляется на вход второй сети). Установлено, что построенные частичные группоиды являются полугруппоидами (т. е. частичными группоидами с условием сильной ассоциативности). Строятся некоторые эндоморфизмы указанных группоидов, которые позволяют менять пороговые значения и функции активации нейронов указанной совокупности. Изучаются преобразования построенных частичных группоидов, которые позволяют менять веса синоптических связей из заданного множества синоптических связей. Данные преобразования в общем случае не являются эндоморфизмами. Был построен частичный группоид, для которого данное преобразование является эндоморфизмом (носитель этого частичного группоида является подмножеством в носителе исходного частичного группоида).
Классическая лемма Донга в теории вертексных алгебр утверждает, что свойство локальности формальных распределений с коэффициентами из алгебры Ли сохраняется под действием вертексного оператора. Аналогичное утверждение известно для ассоциативных алгебр. Изучаются формальные распределения над прелиевыми (правосимметрическими) и преассоциативными (дендриформными) алгебрами, а также над алгебрами Новикова и показывается, что аналог леммы Донга верен для алгебр Новикова, но не выполняется для прелиевых и преассоциативных алгебр.
Исследуется нелинейное интегральное уравнение на полуоси со специальным субстохастическим ядром. Такие уравнения встречаются в кинетической теории газов при изучении нелинейного интегро-дифференциального уравнения Больцмана в рамках нелинейной модифицированной модели Бхатнагара - Гросса - Крука (БГК). При определенных ограничениях на нелинейность удается построить положительное непрерывное и ограниченное решение данного уравнения. Более того, доказывается единственность решения в классе ограниченных сверху на полуоси функций, имеющих положительный инфимум. Доказывается также, что соответствующие последовательные приближения равномерно со скоростью некоторой убывающей геометрической прогрессии сходятся к решению указанного уравнения. При одном дополнительном условии исследуется асимптотическое поведение решения на бесконечности. Приводятся конкретные примеры указанных уравнений, для которых автоматически выполняются все условия доказанных фактов.
Рассматривается нелинейное уравнение Шредингера отрицательного порядка с нагруженным членом в классе периодических функций. Показано, что такое уравнение может быть проинтегрировано методом обратной спектральной задачи. Определена эволюция спектральных данных оператора Дирака с периодическим потенциалом, связанного с решением нелинейного уравнения Шредингера отрицательного порядка с нагруженным членом. Полученные результаты позволяют применить метод обратной задачи для решения нелинейного уравнения Шредингера отрицательного порядка с нагруженным членом в классе периодических функций. Получены важные следствия об аналитичности и о периоде решения по пространственной переменной.
Исследуется теория линейных и нелинейных нечетких интегральных уравнений Вольтерра с кусочно-непрерывными ядрами. Проблема решается с использованием метода последовательных приближений. Рассмотрены вопросы существования и единственности решений для нечетких интегральных уравнений Вольтерра с кусочными ядрами. Численные результаты получены путем применения метода последовательных приближений как к линейным, так и нелинейным интегральным уравнениям Вольтерра с кусочно-непрерывными ядрами. Построены графики для анализа ошибок с целью иллюстрации точности метода. Кроме того, представлено сравнительное исследование, где используются графики приближенных решений для различных значений нечетких параметров. Чтобы подчеркнуть эффективность и значимость метода последовательных приближений, проводится сравнение с традиционной техникой гомотопического анализа. Результаты показывают, что метод последовательных приближений превосходит метод гомотопического анализа по точности и эффективности.
Предлагается матричная реализация метода коллокации для построения решения интегральных уравнений Вольтерра второго рода с применением систем ортогональных полиномов Чебышева первого рода и полиномов Лежандра. Подынтегральная функция в рассматриваемых уравнениях представляется в виде частичной суммы ряда по этим многочленам. В качестве точек коллокаций выбираются корни полиномов Чебышева и Лежандра. С использованием матричных и интегральных преобразований, свойств конечных сумм произведений этих полиномов и весовых функций в нулях соответствующих многочленов со степенью, равной числу узлов, интегральные уравнения приводятся к системам линейных алгебраических уравнений относительно неизвестных значений искомых функций в этих точках. В результате решения интегральных уравнений Вольтерра второго рода находятся путем полиномиальных интерполяций полученных значений функций в точках коллокаций с использованием обратных матриц, элементы которых записываются на основе ортогональных соотношений для этих полиномов. Элементы интегральных матриц также приводятся в явном виде. Получены оценки погрешностей построенных решений по бесконечной норме. Представлены результаты проведенных вычислительных экспериментов, которые демонстрируют эффективность использованного метода коллокации.
В банаховом пространстве исследуется линейная обратная задача для абстрактного дифференциального уравнения второго порядка. Неоднородное вложение в уравнении считается стационарным и неизвестным. В начальный момент времени заданы стандартные условия Коши. В последний момент времени добавлено новое условие - значение второй производной от основной эволюционной функции, т. е. е. порядок производной в конечной величине соответствует порядку уравнений. Для поставленной задачи получены критерии единственности решения, выраженные в спектральных терминах. Указано достаточное условие невозможности решения. Рассмотрен пример уравнения Пуассона в круглой области.
Издательство
- Издательство
- ИГУ
- Регион
- Россия, Иркутск
- Почтовый адрес
- 664003, Иркутская обл, г Иркутск, Кировский р-н, ул Карла Маркса, д 1
- Юр. адрес
- 664003, Иркутская обл, г Иркутск, Кировский р-н, ул Карла Маркса, д 1
- ФИО
- Шмидт Александр Федорович (РЕКТОР)
- E-mail адрес
- rector@isu.ru
- Контактный телефон
- +7 (904) 1502889
- Сайт
- https://api.isu.ru