1. Santos G., Couto E., Paliga A., Cavalheiro G., Avila J. Uma aplicaeao OpenMP para Implementaeao da estrategia Elemento por Elemento em Analise de Elementos Finitos // Revista de Engenharia Civil IMED. 2023. V. 9. P. 54-67. DOI: 10.18256/2358-6508.2022.v9i2.4263
2. Akimova E.N., Sultanov M.A., Misilov V.E., Nurlanuly Y. Parallel Algorithm for Solving the Inverse Two-Dimensional Fractional Diffusion Problem of Identifying the Source Term // Fractal Fract. 2023. V. 7. Art. 801. DOI: 10.3390/fractalfract7110801 EDN: ULQMJC
3. Tang L., Ge M., Schuh H., Wang J., Zhu H., Xu A. Multi-GNSS ultra-rapid orbit determination through epoch-parallel processing // Journal of Geodesy. 2023. V. 97 (11). Art. 99. DOI: 10.1007/s00190-023-01787-1 EDN: HHNXTG
4. Meng F., Shen M. A numerical study on non-spherical droplet impact with solidification in additive manufacturing // Acta Mechanica. 2023. V. 234. P. 1-17. DOI: 10.1007/s00707-023-03689-x EDN: IVHPND
5. Amritkar A. Parallel implementation and application of particle scale heat transfer in the Discrete Element Method: PhD Thesis. Blacksburg, VA, 2013. xiv, 123 p. DOI: 10.13140/2.1.4214.3526
6. Vinay T.R., Satish E.G., Megha J. Design and Programming for Multicore machines: An Empirical study on time and effort re quired by programmer // ITM Web Conf. 2023. V. 57. Art. 01016. DOI: 10.1051/itmconf/20235701016 EDN: QCMSQL
7. Marowka A., Liu Z., Chapman B. Openmp-oriented applications for distributed shared memory architectures // Concurr.Comput. Pract. Exper. 2004. V. 16. P. 371-384. :4. DOI: 10.1002/cpe.v16
8. Nikolopoulos D., Papatheodorou T., Polychronopoulos C., Labarta J. A Transparent Runtime Data Distribution Engine for OpenMP // Scientific Programming. 2002. V. 8 (3). DOI: 10.1155/2000/417570
9. Resch M., Sander B., Loebich I. A comparison of OpenMP and MPI for the parallel CFD test case // Proc. of the 1st European Workshop on OpenMP. 2002. P. 71-75.
10. Старченко А.В., Нутерман Р.Б., Данилкин Е.А. Численное моделирование турбулентных течений и переноса примеси в уличных каньонах. Томск: Изд-во Том. ун-та. 2015. 252 с. EDN: RLRZML
11. Henkes R.A.W.M., van der Flugt F.F., Hoogendoorn C.J. Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models // Int. J. Heat Mass Transfer. 1991. V. 34. P. 1543-1557. DOI: 10.1016/0017-9310(91)90258-G 12. Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computational Methods in Applied Mechanics and Engineering. 1974. V. 3 (2). P. 269-289. DOI: 10.1016/0045-7825(74)90029-2 EDN: XQOCPG
13. Van Leer B. Towards the ultimate conservative difference scheme. II. monotonicity and conservation combined in a second order scheme // Journal of Computational Physics. 1974. V. 14. P. 361-370. DOI: 10.1016/0021-9991(74)90019-9 14. Patankar S. Numerical heat transfer and fluid flow. New York: Hemisphere Publ. Corporation, 1980. 214 р. DOI: 10.1201/9781482234213 15. Marr D.T., Binns F., Hill D.L. et al. Hyper-Threading Technology Architecture and Microarchitecture // Intel Technology Journal. 2002. V. 6, is. 1. Р. 4-15.
16. Старченко А.В., Данилкин Е.А., Проханов С.А., Лещинский Д.В. К выбору гибридной схемы распараллеливания для численного решения уравнений пространственной мезомасштабной метеорологической модели атмосферного пограничного слоя // Десятая Сибирская конференция по параллельным и высокопроизводительным вычислениям. Томск: Изд-во НТЛ, 2021. С. 7-17. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000890941. EDN: SZIRHA
![]()