Описаны устройство и основные параметры фотосенсорных структур и приборов на основе квантовых точек, изготовленных методами коллоидной химии из элементов II, IV и VI групп Периодической таблицы Д.И. Менделеева. Рассмотрены гибридные структурные схемы фоторезистивных, фотодиодных и фототранзисторных элементов с поглощающими слоями на основе коллоидных квантовых точек из HgTe, HgSe, PbS, PbSe для работы в различных спектральных диапазонах, в том числе с использованием 2D-материалов.
The architecture and main parameters of photosensor structures and devices based on colloidal quantum dots (CQDs) of II, IV and VI group elements of the Periodic Table of D. Mendeleev are considered. Hybrid structural schemes of photoresistor, photodiode and phototransistor with absorbing layers based on HgTe, HgSe, PbS, PbSe CQDs and 2D materials for operation in various spectral ranges are comprehensively discussed.
Идентификаторы и классификаторы
- SCI
- Физика
- Префикс DOI
- 10.51368/2307-4469-2021-9-1-25-67
- eLIBRARY ID
- 48451160
Последнее десятилетие развития фото-электроники, особенно инфракрасной, связано с разработкой технологий, направленных на уменьшение весовых, габаритных и стоимостных характеристик современных фотосенсорных устройств, введения в электронику обрамления новых функций обработки фотосигналов, в том числе цифровых, уменьшения энергопотребления за счет повышения рабочих температур, без снижения основных фото-электрических и эксплуатационных характеристик. Широкие перспективы для поиска новых технологических решений в этих направлениях открывают методы коллоид-ной химии синтеза фоточувствительных материалов, способы объединения массивов фоточувствительных элементов на основе коллоидных квантовых точек с кремниевой микроэлектроникой предварительной обработки фотосигналов и т. п. Уже можно констатировать заметный прогресс, достигнутый при создании промышленной технологии неохлаждаемых матричных фотоприемных устройств SWIR-диапазона спектра с форматом 19201080 и шагом 15 мкм на основе коллоидных квантовых то-чек (ККТ) в гибридных структурах ККТ/С60 – фуллерен с высокими фотоэлектрическими характеристиками и низкой стоимостью, создавших реальную альтернативу твердотельным матрицам из InGaAs 77–79. Существенные результаты достигнуты в развитии нового направления фотоники – люминофоров на основе коллоидных квантовых точек, демонстрирующих заметные преимущества по сравнению с традиционными люминофорами (см. V. F. Razumov. Fundamental and applied aspects of luminescence of colloidal quantum dots // Uspekhi Fizicheskikh Nayk, 186(12), 1368–1376, 2016). Развиваются лазеры с активной лазерной средой на основе коллоидных квантовых точек, новые биомедицинские приложения, включая мультиспектральную визуализацию тканей и органов и др. 2, 82. Число публикаций в мировой научной литературе в этих областях за послед-нее время превысило десятки тысяч. Для более детального знакомства с проблема-ми квантовой фотосенсорики на основе коллоидных квантовых точек читатель может обратиться к обзорным работам 19, 29, 35, 48, 116, 117.
В заключение укажем на некоторые ближайшие задачи развития фотосенсорики на основе коллоидных квантовых точек, обозначившиеся в последнее время.
Несмотря на ощутимый прогресс в освоении многоэлементных (число пикселей около 2 млн) и малоразмерных (шаг 15 мкм) матриц SWIR-диапазона, недостаточно активно развиваются технологии коллоидной химии, направленные на продвижение в MWIR- и LWIR-области электромагнитного излучения. Создание современной фотосенсорики SWIR-диапазона требует разработки технологий, обеспечивающих создание крупноформатных матричных фотоприемных устройств с шагом не более 3 мкм. Необходим поиск новых коллоидных квазинульмерных фоточувствительных материалов, способных обеспечить создание многоспектральных фотосенсорных устройств, в том числе на основе тройных твердых растворов, с повышенной рабочей температурой и высоким быстродействием. Более пристального внимания требуют гибридные технологии на основе комбинаций 0D-, 2D- и 3D-структур и материалов.
Список литературы
- Reed M. A., Randall J. N., Aggarwal R. J., Matyi R. J., Moore T. M., Wetsel A. E. Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure // Phys. Rev. Lett. 60 (6), 535–537 (1988).
- Brichkin S. B., Razumov V. F. Colloidal quantum dots: synthesis, properties and applica-tions // Russ. Chem. Rev. 85 (12), 1297–1312 (2016).
- Brus L. Electronic Wave Functions in Sem-iconductor Clusters: Experiment and Theory // J. Phys. Chem. 90, 2555–2560 (1986).
- Ekimov A. I., Onushchenko A. A. Quan-tum size effect in three-dimensional microscopic semiconductor crystals // JETP Letters 34 (6), 345 (1981).
- Ekimov A. I., Onushchenko A. A., Cekhom-sky V. A. Exiton absorption by CuCl crystals in a glassy matrix // Glass Physics and Chemistry 6 (4), 511–512 (1980).
- Ekimov A. I., Efros Al. A., Onushchen-ko A. A. Quantum size effect in semiconductor microcrystals // Sol. St. Communications 56 (11), 921–924 (1985).
- Kukushkin S. A., Osipov A. V. Thin-film condensation processes // Phisics-Uspekhi 41 (10), 983–1041 (1998).
- Aleshkin V. Ya., Baidus N. V., Dubinov A. A., Kudryavtsev K. E., Nekorkin S. M., Kruglov A. V., Reunov D. G. Submonolayer in-gaas/gaas quantum dots grown by MOCVD // FTP, 2019, doi: 10.21883/FTP.2019.08.48011.9124.
- Murray C. B., Norris D. J., Bawendi M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nano-crystallites // J. Am. Chem. Soc. 115, 8706–8715 (1993).
- Sliz R., Lejay M., Fan J. Z., Choi M.-J., Kinge S., Hoogland S., Fabritius T., F. Pelayo Gar-cía de Arquer, Sargent E. H. Stable Colloidal Quan-tum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors // ACS Nano 13, 11988–11995 (2019), doi: 10.1021/acsnano.9b06125.
- Fritz K. P., Perovic A., Nair P. S., Petrov S., Perovic D. D., Scholes G. D. Structural characterization of CdSe nanorods // Journal of Crystal Growth 293, 203–208 (2006).
- Vitukhnovskii A. G., Vashchenko A. A., Lebedev V. S., Vasiliev R. B., Brunkov P. N., By-chkovskii D. N. The mechanism of electronic excitation transfer in organic light emitting devices based on semiconductor quantum dots // Semicon-ductors 47 (7), 962–969 (2013).
- Tovstun S. A., Razumov V. F. Theoreti-cal analysis of methods for the colloidal synthesis of monodisperse nanoparticles // High Energy Chemistry 44, 196–203 (2010), doi: 10.1134/S0018143910030070.
- Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., Kagan C. R. Colloidal synthesis of nano-crystals and nanocrystal superlattices // IBM J. RES. & DEV 45 (1), 47–56 (2001).
- Evans C. M., Cass L. C., Knowles K. E., Tice D. B., Chang R. P. H., Weiss E. A. Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands // Journal of Coordination Chemistry 65 (13), 2391–2414 (2012).
- Razumov V. F., Colloidal quantum dots photonics (Ivanovo University, Ivanovo, 2017. – 269 p.) [in Russian].
- Fedorov A. V., Rukhlenko I. D., Bara-nov A. V., Kruchinin S. Yu., Optical properties of semiconductor quantum dots (Nauka, St. Peters-burg, 2011. – 188 р.) [in Russian].
- Litvin A. P., Martynenko I. V., Purcell-Milton F., Baranov A. V., Fedorov A. V., Gun’ko Y. K. Colloidal quantum dots for optoelec-tronics // J. Mater. Chem. A 5, 13252–13275 (2017), doi: 10.1039/c7ta02076g.
- Saran R., Curry R. J. Lead sulphide nano-crystal photodetector technologies // Nature Pho-tonics 10, 81–92 (2016), doi: 10.1038/NPHOTON.2015.280.
- Gusarova N. I., Koshchavtsev N. F., Po-pov S. V. Advantages of solid-state photodetectors for a spectral interval of 1.4–1.7 μm in night-vision devices // Journal of Communications Technology and Electronics 61 (10), 1211–1214 (2016).
- Xin Tang, Xiaobing Tang, King Wai Chiu Lai. Scalable Fabrication of Infrared Detec-tors with Multispectral Photoresponse Based on Patterned Colloidal Quantum Dot Films // ACS Photonic, 2016, doi:10.1021/acsphotonics.6b00620.
- Keuleyan S. E., Guyot-Sionnest P., Delerue C., Allan G. Mercury Telluride Colloidal Quantum Dots: Electronic Structure, Size-Dependent Spectra, and Photocurrent Detection up to 12 μm // ACS Nano, 2014, doi: 10.1021/nn503805h.
- Keuleyan S., Lhuillier E., Guyot-Sionnes P. Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection // J. Am. Chem. Soc. 133, 16422–16424 (2011), doi: 10.1021/ja2079509.
- Xin Tang, Guangfu Wu, King Wai Chiu Lai. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared // J. Mater. Chem. C 5, 362–369 (2017).
- Lhuillier E., Keuleyan S., Zolotavin P., Guyot-Sionnest P. Mid-Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors // Adv. Ma-ter. 25, 137–141 (2013), doi: 10.1002/adma.201203012.
- Yifat Y., Ackerman M., Guyot-Sionnest P. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas // Appl. Phys. Lett. 110, 041106 (2017); doi: 10.1063/1.4975058.
- Cryer M. E., Halp J. E. 300 nm Spectral Resolution in the Mid-Infrared with Robust, High Responsivity Flexible Colloidal Quantum Dot De-vices at Room Temperature // ACS Photonics, 2018, doi: 10.1021/acsphotonics.8b00738.
- Deng Z., Jeong K. S., Guyot-Sionnest P. Colloidal Quantum Dots Intraband Photodetectors // ACS Nano, 2014, doi: 10.1021/nn505092a.
- Tang X., Ackerman M. M., Guyot-Sionnes P. Thermal Imaging with Plasmon Reso-nance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices // ACS Nano 12, 7362–737 (2018), doi: 10.1021/acsnano.8b03871.
- Jagtap A., Goubet N., Livache C., Chu A., Martinez B., Greboval C., Qu J., Dandeu E., Becer-ra L., Witkowski N., Ithurria S., Mathevet F., Sil-ly M. G., Dubertret B., Lhuillier E. Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances // J. Phys. Chem. C 122, 14979 (2018), doi:10.1021/acs.jpcc.8b03276.
- Weixin Ouyang, Feng Teng, Jr-Hau He, Xiaosheng Fang. Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Charge-Carrier Engineering // Adv. Funct. Mater. 2019, 1807672, doi: 10.1002/adfm.201807672.
- Martyniuk P., Kopytko M., Rogalski A. Barrier infrared detectors // Opto-Electron. Rev. 22 (2), 2014, doi: 10.2478/s11772-014-0187-x
- Ponomarenko V. P., Quantum Photosen-sorics (Orion R&P Association, Moscow, 2018. – 648 p.) [in Russian].
- Jagtap A. M., Martinez B., Goubet N., Chu A., Livache C., Greboval C., Ramade J., Ame-lot D., Trousset P., Triboulin A., Ithurria S., Sil-ly M. G., Dubertret B., Lhuillier E. Design of Uni-polar Barrier for Nanocrystal Based Short Wave Infrared Photodiode // ACS Photonics, 2018, doi: 10.1021/acsphotonics.8b01032.
- Martinez B., Livache C., Chu A., Gréboval C., Cruguel H., Goubet N., Lhuillier E. Designing Photovoltaic Devices Using HgTe Nano-crystals for Short and Mid-Wave Infrared Detec-tion // Phys. Status Solidi A, 2019, 1900449, doi:10.1002/pssa.201900449.
- Livache C., Martinez B., Goubet N., Gréboval C., Qu J., Chu A., Royer S., Ithurria S., Sil-ly M. G., Dubertret B., Lhuillier E. A colloidal quantum dot infrared photodetector and its use for intraband detection // Nature Communications, 2019, doi: 10.1038/s41467-019-10170-8.
- Tang X., Ackerman M. M., Chen M., Guyot-Sionnest P. Dual-band infrared imaging us-ing stacked colloidal quantum dot photodiodes // Nature Photonics 13 (4), 277–282 (2019), doi: /10.1038/s41566-019-0362-1.
- Ackerman M. M., Chen M., Guyot-Sionnest P. HgTe colloidal quantum dot photodi-odes for extended short-wave infrared detection // Appl. Phys. Lett. 116, 083502 (2020), doi: 10.1063/1.5143252.
- Lan X., Chen M., Hudson M. H., Kamysbayev V., Wang Y., Guyot-Sionnest P., Ta-lapin D. V. Quantum dot solids showing state-resolved band-like transport // Nat. Mater., 2020, doi: 10.1038/s41563-019-0582-2.
- Chen M., Lu H., Abdelazim N. M., Zhu Y., Wang Z., Ren W., Kershaw S.V., Rogach A. L., Zhao N. Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm // ACS Nano 11, 5614–5622 (2017), doi: 10.1021/acsnano.7b00972
- Huo N., Gupta S., Konstantatos G. MoS2–HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm // Adv. Mater. 29 (17), 1606576 (2017),
doi: 10.1002/adma.201606576. - Ponomarenko V. P., Popov V. S., Po-pov S. V. Photo- and nanoelectronics based on two-dimensional 2D-materials (a rewiev). Part II. 2D-nanotransistors // Usp. Prikl. Fiz. 8 (1), 33–67 (2020).
- Novoselov K. S., Geim A. K., Moro-zov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric field effect in atomically thin carbon films // Science 306, 666–669 (2004).
- Lawson W. D., Smith F. A., Young A. S. Influence of Crystal Size on the Spectral Response of Evaporated PbTe and PbSe // J. Electrochem. Soc. 107, 206–210 (1960).
- Borrelli N. F., Smith D. W. Quantum confinement of PbS microcrystals in glass // Journal of Non-Crystalline Solids 180, 25–31 (1994).
- Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., Kagan C. R. Colloidal synthesis of nano-
crystals and nanocrystal Superlattices // IBM J. Res. & Dev. 45 (1), 47–56 (2001). - Hines M. A., Scholes G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution // Adv. Mater. 15 (21), 1844–1849 (2003).
- Guyot-Sionnest P., Ackerman M. M., Tang X. Colloidal quantum dots for infrared detec-tion beyond silicon // J. Chem. Phys. 151, 060901 (2019),
doi: 10.1063/1.5115501. - Ermolaev V. L. The effect of ligands and solvents on nonradiative transitions in semiconductor quantum dots (a review) // Optics and Spectros-copy 125 (2), 256–274 (2018).
- Wise F. W. Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement // Acc. Chem. Res. 33, 773–780 (2000).
- Hu C., Gassenq A., Justo Y., Devloo-Casier K., Chen H., Detavernier C., Hens Z., Roelkens R. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition // Appl. Phys. Lett. 105, 171110 (2014), doi: 10.1063/1.4900930.
- de Arquer F. P. G., Lasanta T., Bernechea M., Konstantatos G. Tailoring the Electronic Prop-erties of Colloidal Quantum Dots in Metal–Semiconductor Nanocomposites for High Perfor-mance Photodetectors // Small 11 (22), 2636–41 (2015), doi: 10.1002/smll.201403359.
- Killilea N., Wu M., Sytnyk M., Amin A. A. Y., Mashkov O., Spiecker E., Heiss W. Pushing PbS/Metal-Halide-Perovskite Core/Epitaxial-Ligand-Shell Nanocrystal Photodetectors beyond 3 µm Wave-length // Adv. Funct. Mater., 1807964 (2019),
doi: 10.1002/adfm.201807964. - Yakunin S., Dirin D. N., Protesescu L., Syt-nyk M., Tollabimazraehno S., Humer M., Hackl F., Fromherz T., Bodnarchuk M. I., Ko-valenko M. V., Heiss W. High Infrared Photocon-ductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals // ACS Nano 3, 12883–12894 (2014).
- Konstantatos G., Howard I., Fischer A., Hoog-land S., Clifford J., Klem E., Levina L., Sar-gent E. H. Ultrasensitive solution-cast quantum dot photodetectors // Nature 442, 180–183 (2006).
- Konstantatos G., Clifford J., Levina L., Sargent E. H. Sensitive solution-processed visible-wavelength photodetectors // Nature Photonics 1, 531–534 (2007).
- He J., Luo M., Hu L., Zhou Y., Jiang S., Song H., Ye R., Chen J., Gao L., Tang J. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates // Journal of Alloys and Compounds 596, 73–78 (2014).
- Li C., Bai T., Li F., Wang L., Wu X., Yuan L., Shi Z., Feng S. Growth orientation, shape evo-lution of monodisperse PbSe nanocrystals and their use in optoelectronic devices // CrystEngComm. 15, 597–603 (2013).
- Sashchiuk A., Yanover D., Rubin-Brusilov-ski A., Maikov G. I., Capek R. K., Vaxenburg R., Tilchin J., Zaiats G., Lifshitz E. Tuning of electronic properties in IV–VI colloidal nanostructures by alloy composition and architec-ture // Nanoscale, 2013,
doi: 10.1039/c3nr02141f. - Xiao G., Wang Y., Ning J., Wei Y., Liu B., Yu W. W., Zou G., Zou B. Recent advanc-es in IV–VI semiconductor nanocrystals: synthesis, mechanism, and applications // RSC Advances, 2013, doi: 10.1039/c3ra23209c.
- Shapiro A., Jang Y., Rubin-Brusilovski A., Budniak A. K., Horani F., Sash-chiuk A., Lifshitz E. Tuning optical activity of IV-VI colloidal quantum dots in the short-wave infra-red (SWIR) spectral regime // Chem. Mater. 28 (17), 6409–6416 (2016).
- Thambidurai M., Jang Y., Shapiro A., Yuan G., Hu X., Uechao Y., Wang O., Lifshitz E., Demir H. V., Ang C. High performance infrared photodetectors up to 2.8 µm wavelength based on lead selenide colloidal quantum dots // Opt. Mater. Express 7, 2326–2335 (2017).
- Weon-kyu Koh, Koposov A. Y., Stewart J. T., Pal B. N., Robel I., Pietryga J. M., Klimov V. I. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobalto-cene // Scientific Reports, 2013, doi: 10.1038/srep02004.
- Kroupa D. M., Hughes B. K., Miller E. M., Moore D. T., Anderson N. C., Chernomor-dik B. D., Nozik A. J., Beard M. C. Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots // J. Am. Chem. Soc. 139, 10382–10394 (2017),
doi: 10.1021/jacs.7b04551. - Araujo J. J., Brozek C. K., Kroupa D., Ga-melin D. R. Degenerately n-Doped Colloidal PbSe Quantum Dots: Band Assignments and Electrostat-ic Effects // Nano Letters, 2018, doi: 10.1021/acs.nanolett.8b01235.
- Kim J., Choi D., Jeong K. S. Self-doped colloidal semiconductor nanocrystals with intra-band transitions in steady state // Chem. Commun. 54, 8435–8445 (2018), doi: 10.1039/c8cc02488j.
- McDonald S. A., Konstantatos G., Zhang S., Cyr P. W., Klem E. J. D., Levina L., Sar-gent E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics // Nature Mater. 4 (2), 138–141 (2005), doi: 10.1038/nmat1299.
- Klem E. J. D., Gregory C. W., Cunning-ham G. B., Hall S., Temple D. S., Lewis J. S. Pla-nar PbS quantum dot/C 60 heterojunction photo-voltaic devices with 5.2 % power conversion effi-ciency // Appl. Phys. Lett. 100, 173109 (2012),
doi: 10.1063/1.4707377. - Byung-Ryool Hyun, Zhong Yu-Wu., Bart-nik A. C., Sun L., Abruna H. D., Wise F. W., Goodreau J. D., Matthews J. R., Leslie T. M., Borrelli N. F. Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparti-cles // ACS Nano 2 (11), 2206–2211 (2008).
- Peumans P., Yakimov A., Forrest S. R. Small molecular weight organic thin-film photode-tectors and solar cells // J. Appl. Phys. 93, 3693 (2003);
doi: 10.1063/1.1534621. - Li N., Lassiter B. E., Lunt R. R., Wei G., Forrest S. R. Open circuit voltage enhancement due to reduced dark current in small molecule photo-voltaic cells // Appl. Phys. Lett. 94, 023307 (2009); doi: 10.1063/1.3072807.
- O’Brien D. F., Baldo M. A., Thompson M. E., Forrest S. R. Improved energy transfer in elec-trophosphorescent devices // Appl. Phys. Lett. 74, 442 (1999); doi: 10.1063/1.123055.
- Baldo M. A., Lamansky S., Burrows P. E., Thompson M. E., Forrest S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence // Appl. Phys. Lett. 75, 4 (1999); doi: 10.1063/1.124258
- Klem E., Lewis J., Gregory C., Cunning-ham G., Temple D., D’Souza A., Robinson E., Wijewarnasuriya P. S., Dhar N. High-performance SWIR sensing from colloidal quantum dot // Proc. of SPIE 8868, 886806-1 (2013).
- Klem E. J. D., Gregory C., Temple D., Lewis J. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE 9451, 945104-2 (2015).
- Bakulin A., D’Souza A. I., Masterjohn C., Mei E., Li C., Klem E., Temple D. ROIC for 3 μm pixel pitch colloidal quantum dot detectors // Proc. of SPIE 10656, 1065614-1 (2018).
- Klem E. J. D., Gregory C. W., Temple D. S., Lewis J. S. Colloidal quantum dot Vis-SWIR imaging: demonstration of a focal plane array and camera prototype (Presentation Recording) // Proc. of SPIE 9555, (2015); View presentation video on SPIE’s Digital Library: http://dx.doi.org/10.1117/12.2190372.4519371145001.
- Hinds S., Klem E., Gregory C., Hilton A., Hames G., Violette K. Extended SWIR high per-formance and high definition colloidal quantum dot
imagers // Proc. of SPIE 11407, 1140707-1 (2020). - Palomaki P., Keuleyan S. Snapshots by Quan-tum Dots // Spectrum. IEEE. Org. 25–29 (2020).
- Advertising of the company SWIR Vision Systems.//info@swirvisionsystems.com
- Aleshin A. N. Organic optoelectronics based on polymer-inorganic nanoparticle compo-site materials // Phys. Usp. 56 (6), 627–632 (2013).
- Vitukhnovsky A. G. Organic photonics: achievements and disappointments // Phys. Usp. 56 (6), 623–627 (2013).
- Sariciftci N. S., Smilowitz L., Heeger A. J., Wudl F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfuller-ene // Science 258, 1474–1476 (1992).
- Bazanova A. A., Petrov V. N., Aleshin A. N. Conductivity of Composite Films Based on Conductive Polymer PEDOT:PSS, Gra-phene Oxide and Nanoparticles TiO2 for Contact Layers of Perovskite Photovoltaic Structure // Physics of the Solid State 61 (4), 659–664 (2019).
- Lan Z., Lei Y., Chan W. K. E., Chen S., Luo D., Zhu F. Near-infrared and visible light dual-mode organic photodetectors // Sci. Adv., 2020, doi: 10.1126/sciadv.aaw8065.
- Darwis D., Sesa E., Farhamza D., Iqbal. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics // IOP Conf. Series: Materials Science and Engineering 367, 012029 (2018), doi:10.1088/1757-899X/367/1/012029.
- Dong R., Bi C., Dong Q., Guo F., Yu-an Y., Fang Y., Xiao Z., Huang J. An Ultraviolet-to-NIR Broad Spectral Nanocomposite Photodetec-tor with Gain // Adv. Optical Mater., 2014, doi: 10.1002/adom.201400023
- Kwon J.-B., Kim S.-W., Kang B.-H., Yeom S.-H., Lee W.-H., Kwon D.-H., Lee J.-S., Kang S.W. Air-stable and ultrasensitive solution-cast SWIR photodetectors utilizing modified core/shell collodial quantum dots // Nano Conver-gence, 7, 2020,
doi: 10.1086/s40580-020-00238-3. - Wei Y., Ren Z., Zhang A., Mao P., Li H., Zhong X., Li W., Yang S., Wang J. Hybrid Organ-ic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity // Adv. Funct. Mater. 2018, 1706690, doi: 10.1002/adfm.201706690.
- Sargent E. H., Johnston K. W., Pattantyus-Abraham A. G., Clifford J. P. Schottky-quantum dot photodetectors and photovoltaics. Patent US20120180856A1 2007-04-18.
- Clifford J. P., Johnston K. W., Levina L., Sar-gent E. H. Schottky barriers to colloidal quan-tum dot films. Appl. Phys. Lett. 91, 2531171–2531173 (2007).
- Clifford J. P. Collodial Quantum Dot Schottky Barrier Photodiodes. – 2008, University Toronto.
- Clifford J. P., Konstantatos G., John-ston K. W., Hoogland S., Levina L., Sargent E. H. Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors // Nature Nanotech-nology 9, 40–44 (2008), doi: 10.1038/NNANO.2008.313.
- Heves E., Ozturk C., Ozguz V., Gurbuz Y. Solution based PbS photodiodes, integrable on ROIC, for SWIR detector applications // IEEE Elec-tron. Dev. Lett. 34 (5), 662–664 (2013).
- Pal B. N., Robel I., Mohite A., Lao-charoensuk R., Werder D. J., Klimov V. I. High-Sensitivity p–n Junction Photodiodes Based on PbS Nanocrys-tal Quantum Dots // Adv. Funct. Mater. 22, 1741–1748 (2012), doi: 10.1002/adfm.201102532.
- Liu Y., Gibbs M., Puthussery J., Gaik S., Ihly R., Hillhouse H. W., Law M. Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids // Nano Lett. 10 (5), 1960–1969 (2010), doi: 10.1021/nl101284k.
- Brown P. R., Kim D., Lunt R. R., Zhao N., Bawendi M. G., Grossman J. C., Bulovi V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange // ACS Nano 8 (6), 5863–5872 (2014).
- Lee J. W., Kim D. Y., So F. Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes // Adv. Funct. Mater. 25, 1233–1238 (2015).
- Konstantatos G., Badioli M., Gaudreau L., Osmond J., Bernechea M., de Arquer F. P. G., Gat-ti F., Koppens F. H. L. Hybrid graphene–quantum dot phototransistors with ultrahigh gain // Nature Nanotechnology 2012, doi: 10.1038/NNANO.2012.60.
- Zhang D., Gan L., Cao Y., Wang Q., Qi L., Guo X. Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photo-sensor // Adv. Mater. 24, 2715–2720 (2012), doi: 10.1002/adma.201104597.
- Sun Z., Liu Z., Li J., Tai G., Lau S.-P., Yan F. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ul-trahigh Responsivity // Adv. Mater. 2012, doi: 10.1002/adma.201202220.
- Turyanska L., Makarovsky O., Svatek S. A., Beton P. H., Mellor C. J., Patanè A., Eaves L., Thomas N. R., Fay M. W., Marsden A. J., Wilson N. R. Ligand-Induced Control of Photoconductive Gain and Doping in a Hybrid Graphene–Quantum Dot Transistor // Adv. Electron. Mater. 1, 1500062 (2015),
doi: 10.1002/aelm.201500062. - Nikitskiy I., Goossens S., Kufer D., Lasanta T., Navickaite G., Koppens F. H. L., Kon-stantatos G. Integrating an electrically active col-loidal quantum dot photodiode with a graphene phototransistor // Nature Communications 7, 11954 (2016), doi: 10.1038/ncomms11954.
- Zhang Y., Cao M., Song X., Wang J., Che Y., Dai H., Xin Ding X., Zhang G., Yao J. Multi-Hetero-junction Phototransistors Based on Gra-phene-PbSe Quantum Dot Hybrids // J. Phys. Chem. C, 2015, doi: 10.1021/acs.jpcc.5b07318.
- Ponomarenko V. P., Popov V. S., Po-pov S. V., Chepurnov E. L. Photo- and nanoelectronics based on two-dimensional 2D-materials (a rewiev). Part I. 2D-materials: properties and syn-thesis // Usp. Prikl. Fiz. 7 (1), 10 (2019).
- Zhang W., Huang Z., Zhang W., Li Y. Two-dimensional semiconductors with possible high room temperature mobility // Nano Research 7(12), 1731–1737 (2014), doi: 10.1007/s12274-014-0532-x.
- Kufer D., Nikitskiy I., Lasanta T., Navickaite G., Koppens F. H. L., Konstantatos G. Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors // Adv. Mater. 27, 176–180 (2015), doi: 10.1002/adma.201402471.
- Kufer D., Lasanta T., Bernechea M., Koppens F. H. L., Konstantatos G. Interface Engi-neering in Hybrid Quantum Dot−2D Phototransis-tors // ACS Photonics 3, 1324–1330 (2016), doi: 10.1021/acsphotonics.6b00299.
- Yu Y., Zhang Y., Song X., Zhang H., Cao M., Che Y., Dai H., Yang J., Zhang H., Yao J. PbS-Deco-rated WS2 Phototransistors with Fast Re-sponse // ACS Photonics 4, 950–956 (2017), doi: 10.1021/acsphotonics.6b01049.
- Hu C., Dong D., Yang X., Qiao K., Yang D., Deng H., Yuan S., Khan J., Lan Y., Song H., Tang J. Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2 Toward High Performance and Broadband Phototransistors // Adv. Funct. Mater., 2016,
doi: 10.1002/adfm.201603605. - Gao L., Chen C., Zeng K., Ge C., Yang D., Song H., Tang J. Broadband, sensitive and spectrally distinctive SnS2 nanosheet / PbS colloi-dal quantum dot hybrid photodetector // Light: Science & Applications 5, e16126, (2016) doi:10.1038/lsa.2016.126.
- Lee A.-Y., Ra H.-S., Kwak D. H., Jeong M.-H., Park J.-H., Kang Y.-S., Chae W.-S., Lee J.-S. Hy-brid Black Phosphorus-0D Quantum Dots Photo-transistors; Tunable photodoping and Enhanced photoresponsivity // ACS Appl. Mater. Interfaces, 2018,
doi: 10.1021/acsami.8b03285. - You C., Zhang G., Deng W., Zhao C., An B., Liu B., Wang B., Yan H., Liu D., Zhang Y. Cascade-type energy band design of a black phos-phorus photodetector with high performance // J. Mater. Chem. C, 2018, doi: 10.1039/c8tc05735d.
- Qiao J., Kong X., Hu Z.-X., Yang F., Ji W. High-mobility transport anisotropy and linear dich-roism in few-layer black phosphorus // Nat. Communications 5 (1), 2014, doi: 10.1038/ncomms5475.
- Adinolfi V., Kramer I. J., Labelle A. J., Suther-land B. R., Hoogland S., Sargent E. H. Photojunction Field-Effect Transistor based on a Col-loidal Quantum Dot Absorber Channel Layer // ACS Nano, 2015, doi: 10.1021/nn5053537.
- Nakotte T., Luo H., Pietryga J. PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors // Nanomaterials 10, 172 (2020),
doi:10.3390/nano10010172. - Malinowski P. E., Georgitzikis E., Maes J., Vamvaka I., Frazzica F., Van Olmen J., De Moor P., Heremans P., Hens Z., Cheyns D. Thin-Film Quantum Dot Photodiode for Monolithic In-frared Image Sensors // Sensors 17, 2867 (2017),
doi: 10.3390/s17122867.
- Reed M. A., Randall J. N., Aggarwal R. J., Matyi R. J., Moore T. M., Wetsel A. E. Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure // Phys. Rev. Lett. 60 (6), 535–537 (1988).
- Brichkin S. B., Razumov V. F. Colloidal quantum dots: synthesis, properties and applica-tions // Russ. Chem. Rev. 85 (12), 1297–1312 (2016).
- Brus L. Electronic Wave Functions in Sem-iconductor Clusters: Experiment and Theory // J. Phys. Chem. 90, 2555–2560 (1986).
- Ekimov A. I., Onushchenko A. A. Quan-tum size effect in three-dimensional microscopic semiconductor crystals // JETP Letters 34 (6), 345 (1981).
- Ekimov A. I., Onushchenko A. A., Cekhom-sky V. A. Exiton absorption by CuCl crystals in a glassy matrix // Glass Physics and Chemistry 6 (4), 511–512 (1980).
- Ekimov A. I., Efros Al. A., Onushchen-ko A. A. Quantum size effect in semiconductor microcrystals // Sol. St. Communications 56 (11), 921–924 (1985).
- Kukushkin S. A., Osipov A. V. Thin-film condensation processes // Phisics-Uspekhi 41 (10), 983–1041 (1998).
- Aleshkin V. Ya., Baidus N. V., Dubinov A. A., Kudryavtsev K. E., Nekorkin S. M., Kruglov A. V., Reunov D. G. Submonolayer in-gaas/gaas quantum dots grown by MOCVD // FTP, 2019, doi: 10.21883/FTP.2019.08.48011.9124.
- Murray C. B., Norris D. J., Bawendi M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nano-crystallites // J. Am. Chem. Soc. 115, 8706–8715 (1993).
- Sliz R., Lejay M., Fan J. Z., Choi M.-J., Kinge S., Hoogland S., Fabritius T., F. Pelayo Gar-cía de Arquer, Sargent E. H. Stable Colloidal Quan-tum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors // ACS Nano 13, 11988–11995 (2019), doi: 10.1021/acsnano.9b06125.
- Fritz K. P., Perovic A., Nair P. S., Petrov S., Perovic D. D., Scholes G. D. Structural characterization of CdSe nanorods // Journal of Crystal Growth 293, 203–208 (2006).
- Vitukhnovskii A. G., Vashchenko A. A., Lebedev V. S., Vasiliev R. B., Brunkov P. N., By-chkovskii D. N. The mechanism of electronic excitation transfer in organic light emitting devices based on semiconductor quantum dots // Semicon-ductors 47 (7), 962–969 (2013).
- Tovstun S. A., Razumov V. F. Theoreti-cal analysis of methods for the colloidal synthesis of monodisperse nanoparticles // High Energy Chemistry 44, 196–203 (2010), doi: 10.1134/S0018143910030070.
- Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., Kagan C. R. Colloidal synthesis of nano-crystals and nanocrystal superlattices // IBM J. RES. & DEV 45 (1), 47–56 (2001).
- Evans C. M., Cass L. C., Knowles K. E., Tice D. B., Chang R. P. H., Weiss E. A. Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands // Journal of Coordination Chemistry 65 (13), 2391–2414 (2012).
- Razumov V. F., Colloidal quantum dots photonics (Ivanovo University, Ivanovo, 2017. – 269 p.) [in Russian].
- Fedorov A. V., Rukhlenko I. D., Bara-nov A. V., Kruchinin S. Yu., Optical properties of semiconductor quantum dots (Nauka, St. Peters-burg, 2011. – 188 р.) [in Russian].
- Litvin A. P., Martynenko I. V., Purcell-Milton F., Baranov A. V., Fedorov A. V., Gun’ko Y. K. Colloidal quantum dots for optoelec-tronics // J. Mater. Chem. A 5, 13252–13275 (2017), doi: 10.1039/c7ta02076g.
- Saran R., Curry R. J. Lead sulphide nano-crystal photodetector technologies // Nature Pho-tonics 10, 81–92 (2016), doi: 10.1038/NPHOTON.2015.280.
- Gusarova N. I., Koshchavtsev N. F., Po-pov S. V. Advantages of solid-state photodetectors for a spectral interval of 1.4–1.7 μm in night-vision devices // Journal of Communications Technology and Electronics 61 (10), 1211–1214 (2016).
- Xin Tang, Xiaobing Tang, King Wai Chiu Lai. Scalable Fabrication of Infrared Detec-tors with Multispectral Photoresponse Based on Patterned Colloidal Quantum Dot Films // ACS Photonic, 2016, doi:10.1021/acsphotonics.6b00620.
- Keuleyan S. E., Guyot-Sionnest P., Delerue C., Allan G. Mercury Telluride Colloidal Quantum Dots: Electronic Structure, Size-Dependent Spectra, and Photocurrent Detection up to 12 μm // ACS Nano, 2014, doi: 10.1021/nn503805h.
- Keuleyan S., Lhuillier E., Guyot-Sionnes P. Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection // J. Am. Chem. Soc. 133, 16422–16424 (2011), doi: 10.1021/ja2079509.
- Xin Tang, Guangfu Wu, King Wai Chiu Lai. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared // J. Mater. Chem. C 5, 362–369 (2017).
- Lhuillier E., Keuleyan S., Zolotavin P., Guyot-Sionnest P. Mid-Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors // Adv. Ma-ter. 25, 137–141 (2013), doi: 10.1002/adma.201203012.
- Yifat Y., Ackerman M., Guyot-Sionnest P. Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas // Appl. Phys. Lett. 110, 041106 (2017); doi: 10.1063/1.4975058.
- Cryer M. E., Halp J. E. 300 nm Spectral Resolution in the Mid-Infrared with Robust, High Responsivity Flexible Colloidal Quantum Dot De-vices at Room Temperature // ACS Photonics, 2018, doi: 10.1021/acsphotonics.8b00738.
- Deng Z., Jeong K. S., Guyot-Sionnest P. Colloidal Quantum Dots Intraband Photodetectors // ACS Nano, 2014, doi: 10.1021/nn505092a.
- Tang X., Ackerman M. M., Guyot-Sionnes P. Thermal Imaging with Plasmon Reso-nance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices // ACS Nano 12, 7362–737 (2018), doi: 10.1021/acsnano.8b03871.
- Jagtap A., Goubet N., Livache C., Chu A., Martinez B., Greboval C., Qu J., Dandeu E., Becer-ra L., Witkowski N., Ithurria S., Mathevet F., Sil-ly M. G., Dubertret B., Lhuillier E. Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances // J. Phys. Chem. C 122, 14979 (2018), doi:10.1021/acs.jpcc.8b03276.
- Weixin Ouyang, Feng Teng, Jr-Hau He, Xiaosheng Fang. Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Charge-Carrier Engineering // Adv. Funct. Mater. 2019, 1807672, doi: 10.1002/adfm.201807672.
- Martyniuk P., Kopytko M., Rogalski A. Barrier infrared detectors // Opto-Electron. Rev. 22 (2), 2014, doi: 10.2478/s11772-014-0187-x
- Ponomarenko V. P., Quantum Photosen-sorics (Orion R&P Association, Moscow, 2018. – 648 p.) [in Russian].
- Jagtap A. M., Martinez B., Goubet N., Chu A., Livache C., Greboval C., Ramade J., Ame-lot D., Trousset P., Triboulin A., Ithurria S., Sil-ly M. G., Dubertret B., Lhuillier E. Design of Uni-polar Barrier for Nanocrystal Based Short Wave Infrared Photodiode // ACS Photonics, 2018, doi: 10.1021/acsphotonics.8b01032.
- Martinez B., Livache C., Chu A., Gréboval C., Cruguel H., Goubet N., Lhuillier E. Designing Photovoltaic Devices Using HgTe Nano-crystals for Short and Mid-Wave Infrared Detec-tion // Phys. Status Solidi A, 2019, 1900449, doi:10.1002/pssa.201900449.
- Livache C., Martinez B., Goubet N., Gréboval C., Qu J., Chu A., Royer S., Ithurria S., Sil-ly M. G., Dubertret B., Lhuillier E. A colloidal quantum dot infrared photodetector and its use for intraband detection // Nature Communications, 2019, doi: 10.1038/s41467-019-10170-8.
- Tang X., Ackerman M. M., Chen M., Guyot-Sionnest P. Dual-band infrared imaging us-ing stacked colloidal quantum dot photodiodes // Nature Photonics 13 (4), 277–282 (2019), doi: /10.1038/s41566-019-0362-1.
- Ackerman M. M., Chen M., Guyot-Sionnest P. HgTe colloidal quantum dot photodi-odes for extended short-wave infrared detection // Appl. Phys. Lett. 116, 083502 (2020), doi: 10.1063/1.5143252.
- Lan X., Chen M., Hudson M. H., Kamysbayev V., Wang Y., Guyot-Sionnest P., Ta-lapin D. V. Quantum dot solids showing state-resolved band-like transport // Nat. Mater., 2020, doi: 10.1038/s41563-019-0582-2.
- Chen M., Lu H., Abdelazim N. M., Zhu Y., Wang Z., Ren W., Kershaw S.V., Rogach A. L., Zhao N. Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm // ACS Nano 11, 5614–5622 (2017), doi: 10.1021/acsnano.7b00972
- Huo N., Gupta S., Konstantatos G. MoS2–HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm // Adv. Mater. 29 (17), 1606576 (2017),
doi: 10.1002/adma.201606576. - Ponomarenko V. P., Popov V. S., Po-pov S. V. Photo- and nanoelectronics based on two-dimensional 2D-materials (a rewiev). Part II. 2D-nanotransistors // Usp. Prikl. Fiz. 8 (1), 33–67 (2020).
- Novoselov K. S., Geim A. K., Moro-zov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric field effect in atomically thin carbon films // Science 306, 666–669 (2004).
- Lawson W. D., Smith F. A., Young A. S. Influence of Crystal Size on the Spectral Response of Evaporated PbTe and PbSe // J. Electrochem. Soc. 107, 206–210 (1960).
- Borrelli N. F., Smith D. W. Quantum confinement of PbS microcrystals in glass // Journal of Non-Crystalline Solids 180, 25–31 (1994).
- Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., Kagan C. R. Colloidal synthesis of nano-
crystals and nanocrystal Superlattices // IBM J. Res. & Dev. 45 (1), 47–56 (2001). - Hines M. A., Scholes G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution // Adv. Mater. 15 (21), 1844–1849 (2003).
- Guyot-Sionnest P., Ackerman M. M., Tang X. Colloidal quantum dots for infrared detec-tion beyond silicon // J. Chem. Phys. 151, 060901 (2019),
doi: 10.1063/1.5115501. - Ermolaev V. L. The effect of ligands and solvents on nonradiative transitions in semiconductor quantum dots (a review) // Optics and Spectros-copy 125 (2), 256–274 (2018).
- Wise F. W. Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement // Acc. Chem. Res. 33, 773–780 (2000).
- Hu C., Gassenq A., Justo Y., Devloo-Casier K., Chen H., Detavernier C., Hens Z., Roelkens R. Air-stable short-wave infrared PbS colloidal quantum dot photoconductors passivated with Al2O3 atomic layer deposition // Appl. Phys. Lett. 105, 171110 (2014), doi: 10.1063/1.4900930.
- de Arquer F. P. G., Lasanta T., Bernechea M., Konstantatos G. Tailoring the Electronic Prop-erties of Colloidal Quantum Dots in Metal–Semiconductor Nanocomposites for High Perfor-mance Photodetectors // Small 11 (22), 2636–41 (2015), doi: 10.1002/smll.201403359.
- Killilea N., Wu M., Sytnyk M., Amin A. A. Y., Mashkov O., Spiecker E., Heiss W. Pushing PbS/Metal-Halide-Perovskite Core/Epitaxial-Ligand-Shell Nanocrystal Photodetectors beyond 3 µm Wave-length // Adv. Funct. Mater., 1807964 (2019),
doi: 10.1002/adfm.201807964. - Yakunin S., Dirin D. N., Protesescu L., Syt-nyk M., Tollabimazraehno S., Humer M., Hackl F., Fromherz T., Bodnarchuk M. I., Ko-valenko M. V., Heiss W. High Infrared Photocon-ductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals // ACS Nano 3, 12883–12894 (2014).
- Konstantatos G., Howard I., Fischer A., Hoog-land S., Clifford J., Klem E., Levina L., Sar-gent E. H. Ultrasensitive solution-cast quantum dot photodetectors // Nature 442, 180–183 (2006).
- Konstantatos G., Clifford J., Levina L., Sargent E. H. Sensitive solution-processed visible-wavelength photodetectors // Nature Photonics 1, 531–534 (2007).
- He J., Luo M., Hu L., Zhou Y., Jiang S., Song H., Ye R., Chen J., Gao L., Tang J. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates // Journal of Alloys and Compounds 596, 73–78 (2014).
- Li C., Bai T., Li F., Wang L., Wu X., Yuan L., Shi Z., Feng S. Growth orientation, shape evo-lution of monodisperse PbSe nanocrystals and their use in optoelectronic devices // CrystEngComm. 15, 597–603 (2013).
- Sashchiuk A., Yanover D., Rubin-Brusilov-ski A., Maikov G. I., Capek R. K., Vaxenburg R., Tilchin J., Zaiats G., Lifshitz E. Tuning of electronic properties in IV–VI colloidal nanostructures by alloy composition and architec-ture // Nanoscale, 2013,
doi: 10.1039/c3nr02141f. - Xiao G., Wang Y., Ning J., Wei Y., Liu B., Yu W. W., Zou G., Zou B. Recent advanc-es in IV–VI semiconductor nanocrystals: synthesis, mechanism, and applications // RSC Advances, 2013, doi: 10.1039/c3ra23209c.
- Shapiro A., Jang Y., Rubin-Brusilovski A., Budniak A. K., Horani F., Sash-chiuk A., Lifshitz E. Tuning optical activity of IV-VI colloidal quantum dots in the short-wave infra-red (SWIR) spectral regime // Chem. Mater. 28 (17), 6409–6416 (2016).
- Thambidurai M., Jang Y., Shapiro A., Yuan G., Hu X., Uechao Y., Wang O., Lifshitz E., Demir H. V., Ang C. High performance infrared photodetectors up to 2.8 µm wavelength based on lead selenide colloidal quantum dots // Opt. Mater. Express 7, 2326–2335 (2017).
- Weon-kyu Koh, Koposov A. Y., Stewart J. T., Pal B. N., Robel I., Pietryga J. M., Klimov V. I. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobalto-cene // Scientific Reports, 2013, doi: 10.1038/srep02004.
- Kroupa D. M., Hughes B. K., Miller E. M., Moore D. T., Anderson N. C., Chernomor-dik B. D., Nozik A. J., Beard M. C. Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots // J. Am. Chem. Soc. 139, 10382–10394 (2017),
doi: 10.1021/jacs.7b04551. - Araujo J. J., Brozek C. K., Kroupa D., Ga-melin D. R. Degenerately n-Doped Colloidal PbSe Quantum Dots: Band Assignments and Electrostat-ic Effects // Nano Letters, 2018, doi: 10.1021/acs.nanolett.8b01235.
- Kim J., Choi D., Jeong K. S. Self-doped colloidal semiconductor nanocrystals with intra-band transitions in steady state // Chem. Commun. 54, 8435–8445 (2018), doi: 10.1039/c8cc02488j.
- McDonald S. A., Konstantatos G., Zhang S., Cyr P. W., Klem E. J. D., Levina L., Sar-gent E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics // Nature Mater. 4 (2), 138–141 (2005), doi: 10.1038/nmat1299.
- Klem E. J. D., Gregory C. W., Cunning-ham G. B., Hall S., Temple D. S., Lewis J. S. Pla-nar PbS quantum dot/C 60 heterojunction photo-voltaic devices with 5.2 % power conversion effi-ciency // Appl. Phys. Lett. 100, 173109 (2012),
doi: 10.1063/1.4707377. - Byung-Ryool Hyun, Zhong Yu-Wu., Bart-nik A. C., Sun L., Abruna H. D., Wise F. W., Goodreau J. D., Matthews J. R., Leslie T. M., Borrelli N. F. Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparti-cles // ACS Nano 2 (11), 2206–2211 (2008).
- Peumans P., Yakimov A., Forrest S. R. Small molecular weight organic thin-film photode-tectors and solar cells // J. Appl. Phys. 93, 3693 (2003);
doi: 10.1063/1.1534621. - Li N., Lassiter B. E., Lunt R. R., Wei G., Forrest S. R. Open circuit voltage enhancement due to reduced dark current in small molecule photo-voltaic cells // Appl. Phys. Lett. 94, 023307 (2009); doi: 10.1063/1.3072807.
- O’Brien D. F., Baldo M. A., Thompson M. E., Forrest S. R. Improved energy transfer in elec-trophosphorescent devices // Appl. Phys. Lett. 74, 442 (1999); doi: 10.1063/1.123055.
- Baldo M. A., Lamansky S., Burrows P. E., Thompson M. E., Forrest S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence // Appl. Phys. Lett. 75, 4 (1999); doi: 10.1063/1.124258
- Klem E., Lewis J., Gregory C., Cunning-ham G., Temple D., D’Souza A., Robinson E., Wijewarnasuriya P. S., Dhar N. High-performance SWIR sensing from colloidal quantum dot // Proc. of SPIE 8868, 886806-1 (2013).
- Klem E. J. D., Gregory C., Temple D., Lewis J. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE 9451, 945104-2 (2015).
- Bakulin A., D’Souza A. I., Masterjohn C., Mei E., Li C., Klem E., Temple D. ROIC for 3 μm pixel pitch colloidal quantum dot detectors // Proc. of SPIE 10656, 1065614-1 (2018).
- Klem E. J. D., Gregory C. W., Temple D. S., Lewis J. S. Colloidal quantum dot Vis-SWIR imaging: demonstration of a focal plane array and camera prototype (Presentation Recording) // Proc. of SPIE 9555, (2015); View presentation video on SPIE’s Digital Library: http://dx.doi.org/10.1117/12.2190372.4519371145001.
- Hinds S., Klem E., Gregory C., Hilton A., Hames G., Violette K. Extended SWIR high per-formance and high definition colloidal quantum dot
imagers // Proc. of SPIE 11407, 1140707-1 (2020). - Palomaki P., Keuleyan S. Snapshots by Quan-tum Dots // Spectrum. IEEE. Org. 25–29 (2020).
- Advertising of the company SWIR Vision Systems.//info@swirvisionsystems.com
- Aleshin A. N. Organic optoelectronics based on polymer-inorganic nanoparticle compo-site materials // Phys. Usp. 56 (6), 627–632 (2013).
- Vitukhnovsky A. G. Organic photonics: achievements and disappointments // Phys. Usp. 56 (6), 623–627 (2013).
- Sariciftci N. S., Smilowitz L., Heeger A. J., Wudl F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfuller-ene // Science 258, 1474–1476 (1992).
- Bazanova A. A., Petrov V. N., Aleshin A. N. Conductivity of Composite Films Based on Conductive Polymer PEDOT:PSS, Gra-phene Oxide and Nanoparticles TiO2 for Contact Layers of Perovskite Photovoltaic Structure // Physics of the Solid State 61 (4), 659–664 (2019).
- Lan Z., Lei Y., Chan W. K. E., Chen S., Luo D., Zhu F. Near-infrared and visible light dual-mode organic photodetectors // Sci. Adv., 2020, doi: 10.1126/sciadv.aaw8065.
- Darwis D., Sesa E., Farhamza D., Iqbal. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics // IOP Conf. Series: Materials Science and Engineering 367, 012029 (2018), doi:10.1088/1757-899X/367/1/012029.
- Dong R., Bi C., Dong Q., Guo F., Yu-an Y., Fang Y., Xiao Z., Huang J. An Ultraviolet-to-NIR Broad Spectral Nanocomposite Photodetec-tor with Gain // Adv. Optical Mater., 2014, doi: 10.1002/adom.201400023
- Kwon J.-B., Kim S.-W., Kang B.-H., Yeom S.-H., Lee W.-H., Kwon D.-H., Lee J.-S., Kang S.W. Air-stable and ultrasensitive solution-cast SWIR photodetectors utilizing modified core/shell collodial quantum dots // Nano Conver-gence, 7, 2020,
doi: 10.1086/s40580-020-00238-3. - Wei Y., Ren Z., Zhang A., Mao P., Li H., Zhong X., Li W., Yang S., Wang J. Hybrid Organ-ic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity // Adv. Funct. Mater. 2018, 1706690, doi: 10.1002/adfm.201706690.
- Sargent E. H., Johnston K. W., Pattantyus-Abraham A. G., Clifford J. P. Schottky-quantum dot photodetectors and photovoltaics. Patent US20120180856A1 2007-04-18.
- Clifford J. P., Johnston K. W., Levina L., Sar-gent E. H. Schottky barriers to colloidal quan-tum dot films. Appl. Phys. Lett. 91, 2531171–2531173 (2007).
- Clifford J. P. Collodial Quantum Dot Schottky Barrier Photodiodes. – 2008, University Toronto.
- Clifford J. P., Konstantatos G., John-ston K. W., Hoogland S., Levina L., Sargent E. H. Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors // Nature Nanotech-nology 9, 40–44 (2008), doi: 10.1038/NNANO.2008.313.
- Heves E., Ozturk C., Ozguz V., Gurbuz Y. Solution based PbS photodiodes, integrable on ROIC, for SWIR detector applications // IEEE Elec-tron. Dev. Lett. 34 (5), 662–664 (2013).
- Pal B. N., Robel I., Mohite A., Lao-charoensuk R., Werder D. J., Klimov V. I. High-Sensitivity p–n Junction Photodiodes Based on PbS Nanocrys-tal Quantum Dots // Adv. Funct. Mater. 22, 1741–1748 (2012), doi: 10.1002/adfm.201102532.
- Liu Y., Gibbs M., Puthussery J., Gaik S., Ihly R., Hillhouse H. W., Law M. Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids // Nano Lett. 10 (5), 1960–1969 (2010), doi: 10.1021/nl101284k.
- Brown P. R., Kim D., Lunt R. R., Zhao N., Bawendi M. G., Grossman J. C., Bulovi V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange // ACS Nano 8 (6), 5863–5872 (2014).
- Lee J. W., Kim D. Y., So F. Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes // Adv. Funct. Mater. 25, 1233–1238 (2015).
- Konstantatos G., Badioli M., Gaudreau L., Osmond J., Bernechea M., de Arquer F. P. G., Gat-ti F., Koppens F. H. L. Hybrid graphene–quantum dot phototransistors with ultrahigh gain // Nature Nanotechnology 2012, doi: 10.1038/NNANO.2012.60.
- Zhang D., Gan L., Cao Y., Wang Q., Qi L., Guo X. Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photo-sensor // Adv. Mater. 24, 2715–2720 (2012), doi: 10.1002/adma.201104597.
- Sun Z., Liu Z., Li J., Tai G., Lau S.-P., Yan F. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ul-trahigh Responsivity // Adv. Mater. 2012, doi: 10.1002/adma.201202220.
- Turyanska L., Makarovsky O., Svatek S. A., Beton P. H., Mellor C. J., Patanè A., Eaves L., Thomas N. R., Fay M. W., Marsden A. J., Wilson N. R. Ligand-Induced Control of Photoconductive Gain and Doping in a Hybrid Graphene–Quantum Dot Transistor // Adv. Electron. Mater. 1, 1500062 (2015),
doi: 10.1002/aelm.201500062. - Nikitskiy I., Goossens S., Kufer D., Lasanta T., Navickaite G., Koppens F. H. L., Kon-stantatos G. Integrating an electrically active col-loidal quantum dot photodiode with a graphene phototransistor // Nature Communications 7, 11954 (2016), doi: 10.1038/ncomms11954.
- Zhang Y., Cao M., Song X., Wang J., Che Y., Dai H., Xin Ding X., Zhang G., Yao J. Multi-Hetero-junction Phototransistors Based on Gra-phene-PbSe Quantum Dot Hybrids // J. Phys. Chem. C, 2015, doi: 10.1021/acs.jpcc.5b07318.
- Ponomarenko V. P., Popov V. S., Po-pov S. V., Chepurnov E. L. Photo- and nanoelectronics based on two-dimensional 2D-materials (a rewiev). Part I. 2D-materials: properties and syn-thesis // Usp. Prikl. Fiz. 7 (1), 10 (2019).
- Zhang W., Huang Z., Zhang W., Li Y. Two-dimensional semiconductors with possible high room temperature mobility // Nano Research 7(12), 1731–1737 (2014), doi: 10.1007/s12274-014-0532-x.
- Kufer D., Nikitskiy I., Lasanta T., Navickaite G., Koppens F. H. L., Konstantatos G. Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors // Adv. Mater. 27, 176–180 (2015), doi: 10.1002/adma.201402471.
- Kufer D., Lasanta T., Bernechea M., Koppens F. H. L., Konstantatos G. Interface Engi-neering in Hybrid Quantum Dot−2D Phototransis-tors // ACS Photonics 3, 1324–1330 (2016), doi: 10.1021/acsphotonics.6b00299.
- Yu Y., Zhang Y., Song X., Zhang H., Cao M., Che Y., Dai H., Yang J., Zhang H., Yao J. PbS-Deco-rated WS2 Phototransistors with Fast Re-sponse // ACS Photonics 4, 950–956 (2017), doi: 10.1021/acsphotonics.6b01049.
- Hu C., Dong D., Yang X., Qiao K., Yang D., Deng H., Yuan S., Khan J., Lan Y., Song H., Tang J. Synergistic Effect of Hybrid PbS Quantum Dots/2D-WSe2 Toward High Performance and Broadband Phototransistors // Adv. Funct. Mater., 2016,
doi: 10.1002/adfm.201603605. - Gao L., Chen C., Zeng K., Ge C., Yang D., Song H., Tang J. Broadband, sensitive and spectrally distinctive SnS2 nanosheet / PbS colloi-dal quantum dot hybrid photodetector // Light: Science & Applications 5, e16126, (2016) doi:10.1038/lsa.2016.126.
- Lee A.-Y., Ra H.-S., Kwak D. H., Jeong M.-H., Park J.-H., Kang Y.-S., Chae W.-S., Lee J.-S. Hy-brid Black Phosphorus-0D Quantum Dots Photo-transistors; Tunable photodoping and Enhanced photoresponsivity // ACS Appl. Mater. Interfaces, 2018,
doi: 10.1021/acsami.8b03285. - You C., Zhang G., Deng W., Zhao C., An B., Liu B., Wang B., Yan H., Liu D., Zhang Y. Cascade-type energy band design of a black phos-phorus photodetector with high performance // J. Mater. Chem. C, 2018, doi: 10.1039/c8tc05735d.
- Qiao J., Kong X., Hu Z.-X., Yang F., Ji W. High-mobility transport anisotropy and linear dich-roism in few-layer black phosphorus // Nat. Communications 5 (1), 2014, doi: 10.1038/ncomms5475.
- Adinolfi V., Kramer I. J., Labelle A. J., Suther-land B. R., Hoogland S., Sargent E. H. Photojunction Field-Effect Transistor based on a Col-loidal Quantum Dot Absorber Channel Layer // ACS Nano, 2015, doi: 10.1021/nn5053537.
- Nakotte T., Luo H., Pietryga J. PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors // Nanomaterials 10, 172 (2020),
doi:10.3390/nano10010172. - Malinowski P. E., Georgitzikis E., Maes J., Vamvaka I., Frazzica F., Van Olmen J., De Moor P., Heremans P., Hens Z., Cheyns D. Thin-Film Quantum Dot Photodiode for Monolithic In-frared Image Sensors // Sensors 17, 2867 (2017),
doi: 10.3390/s17122867.
Выпуск
Другие статьи выпуска
Выполнен анализ перспективных малогабаритных систем охлаждения ФПУ, работающих при температуре криостатирования (110–150) К. Существенными достоинствами таких систем являются сниженные массогабаритные характеристики и пониженное энергопотребление, что позволяет находить новые мобильные области применения для компактных MWIR-модулей. Приведены результаты разработки и моделирования высокотемпературной микрокриогенной системы (МКС) для охлаждения МФПУ.
В работе обсуждаются проблемы, связанные с развитием технологии детекторов излучения терагерцового диапазона. Рассмотрены основные физические явления и недавний прогресс в различных методах детектирования терагерцового излучения (прямого детектирования и гетеродинного детектирования). Обсуждаются преимущества и недостатки сенсоров прямого детектирования и сенсоров с гетеродинным детектированием. В части 1 рассмотрен ряд особенностей прямого детектирования и дано описание некоторых типов терагерцовых детекторов прямого обнаружения. В части 2 будет дано описание гетеродинного детектирования и продолжено описание некоторых типов современных фотонных терагерцовых приемников.
Разработан алгоритм анализа возможности протекания физико-химических реакций при пайке сапфира с металлами, построенный на известных уравнениях термодинамики. Приведены результаты термодинамического анализа основных способов получения соединений сапфира с использованием молибденовой и вольфрамовой металлизации, активной пайки титаном.
Предложена система очистки околоземного пространства от объектов космического мусора в верхних слоях атмосферы на основе плазменного ускорителя, использующего среду верхних слоев атмосферы и излучение Солнца для создания плазменных потоков требуемой интенсивности. Получены оценки основных материальных и энергетических характеристик системы, которые демонстрируют техническую реализуемость предлагаемого устройства.
Издательство
- Издательство
- АО "НПО "ОРИОН"
- Регион
- Россия, Москва
- Почтовый адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- Юр. адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- ФИО
- Старцев Вадим Валерьевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- orion@orion-ir.ru
- Контактный телефон
- +7 (499) 3749400