Разработка компьютерных моделей ортопедических изделий позволяет добавить в арсенал травматологаортопеда цифровой инструментарий, позволяющий рассчитать биомеханические последствия выбранной тактики реконструктивно-восстановительного лечения. Так, при использовании метода наружной чрескостной фиксации с помощью цифрового двойника аппарата Илизарова модификации Багирова оперирующий хирург на предоперационном этапе может оценить влияние выбора компоновки аппарата на риск возможной дестабилизации взаимоотношений костных фрагментов. Клиническими показаниями к использованию аппарата Илизарова модификации Багирова являются переломы костей голени, которые составляют до 45 % случаев от всех переломов длинных костей скелета человека. Сращение переломов сопровождается большим числом осложнений, поэтому проблема улучшения результатов лечения пациентов с указанной травмой по-прежнему актуальна для современной травматологии и ортопедии. Использование аппаратов наружной фиксации позволяет также обеспечить стабильно-функциональную фиксацию костных фрагментов для устранения сложных деформаций костей конечностей. Применение компрессионно-дистракционных аппаратов позволяет расширить потенциальное использование аппаратов наружной фиксации для решения задач дистракционного остеогенеза. Биомеханические взаимоотношения в системе «кость – аппарат» являются значимым фактором, позволяющим объективизировать компоновку аппарата и режим двигательной реабилитации в раннем послеоперационном периоде. В рамках проведенного исследования была построена математическая модель аппарата Илизарова модификации Багирова и с помощью метода конечных элементов рассчитано напряженно-деформированное состояние компонент конструкции аппарата при модельных нагрузках. Для валидации построенной компьютерной модели был проведен натурный эксперимент на универсальной испытательной машине Walter+Bai AG LFM-50. Исследуемая конструкция была подвергнута осевому сжатию нагрузкой до 1000 Н. В результате проведенного сравнительного анализа резистентности аппарата осевому сжатию, выявлено, что результаты расчета методом конечных элементов с достаточной точностью описывают результаты эксперимента. Сопоставление результатов расчетов с экспериментальными данными позволяет утверждать, что предложенная компьютерная модель корректно описывает механическое поведение исследованного медицинского изделия и может быть использована при проведении вычислительных экспериментов для оценки функциональности различных компоновок аппарата
Идея построения специального тензора для описания параметров структурно-неоднородных материалов возникла из целого ряда попыток количественно охарактеризовать микроструктуру упругого пористого материала. Использование специальных тензорных величин для описания стереометрических характеристик структурно-анизотропных материалов позволяет в компактном виде выразить значимые структурные параметры исследуемых объектов. Преимущественная ориентация пор внутри образца хорошо описывается тензором структуры и, алгебраически связанным с ним тензором анизотропии. Приведенные в работе математические выкладки, позволили формализовать процесс вычисления всех необходимых для построения тензора структуры параметров. Алгоритмизация метода определения среднего расстояния между порами, легла в основу разработанного специализированного программного обеспечения для расчета компонент тензора структуры. Верификация программного модуля была осуществлена путем проведения стереологического исследования ряда идеализированных тестовых структур и образца пористого материала, для которого тензор структуры был известен заранее. Полученные результаты не противоречили природной действительности, совпадали с ранее полученными данными и описывали степень анизотропии исследованных структур с высокой степенью точности. В качестве демонстрации практического использования разработанного программного комплекса в работе представлены результаты исследования образца трабекулярной костной ткани шейки бедренной кости человека и образца автоклавного газобетона. Проведены вычисления всех необходимых параметров и приведены изображения эллипса структуры исследованных пористых материалов. Из полученных результатов видно, что тензор структуры способен описывать стереометрические характеристики натуральных и искусственных пористых структур, а пакет проблемно-ориентированных программ позволяет автоматизировать процесс определения всех необходимых параметров.