Целью работы является обеспечение непрерывного мониторинга, прогнозирования и достоверности показателей состояния производства и факторов его роста на предприятиях водного транспорта, по данным статистики, на основе опыта моделирования и параметрической оценки производственных функций с применением нейтронных сетей и интеллектуальных систем. В связи с этим появляется возможность формирования значений целевых индикаторов и показателей развития внутреннего водного транспорта по контрольным периодам на краткосрочном и стратегическом уровнях. Предлагается алгоритм численной оценки параметров моделей производственных функций потребления, построенных с помощью регрессионных нейросетей по данным статистики социально-экономического развития региона. Отмечается, что существенным отличием данного способа оценки является использование нейросетевых технологий, способствующих значительному расширению технических возможностей моделирования и повышению точности вычислений путем получения рекуррентных оценок вектора искомых коэффициентов модели. Показано, что для рассматриваемого класса задач «пригонки» траекторий функции потребления к статистическим данным можно применять нейронные модели обобщенно-регрессионных сетей, обладающие простыми режимами обучения и высокой точностью моделирования. При этом применение нейросетевых технологий обеспечивает максимальное приближение модели производственной функции заданной структуры к нейронной модели при заданном начальном приближении с последующим ее использованием для оценки весовых коэффициентов. Применение алгоритма продемонстрировано на примере оценок параметров аппроксимированной с помощью нейросети функции потребления по соответствующим данным временных рядов. Получены численные оценки с применением операторных функций из арсенала Neural Networks Toolbox среды MATLAB. Предложенный алгоритм может быть применен для численного анализа производственных моделей потребления со сложными логико-вероятностными связями при оценивании целевых индикаторов и показателей развития внутреннего водного транспорта.
Цель работы состоит в усовершенствовании методов компьютерного мониторинга и параметрической идентификации моделей расходных характеристик судов для анализа и прогнозирования показателей энергоэффективности объектов водного транспорта, а также оптимизации режимов работы дизель-генераторных агрегатов.
Предложен алгоритм параметрической идентификации характеристик «вход-выход» различных по природе технологических процессов и систем (технических, биологических, экономических, социальных, экологических и др.) по данным измерений с помощью аппроксимоторных (регрессионных) нейронных сетей с возможностью количественной оценки погрешности параметрической оптимизации по эвклидовой норме.
В отличие от известных методов параметрической пригонки модели по статистическим рядам предлагаемый способ базируется на обучении многослойной нейрон ной сети с обратным распространением ошибки отклонений значений выходных сигналов от эталонных с целью ее коррекции за счет введения поправок в значения весовых коэффициентов синаптических связей.
Реализация алгоритма идентификации на основе предлагаемого способа пригонки модели выполнена с помощью радиальных нейронных сетей, имеющих фиксированную структуру с одним скрытым и одним выходным слоями в соответствии с нелинейными и линейными функциями активации нейронов, обеспечивающих точность отображения образов на основе эвклидовой метрики.
Предлагаемый подход позволяет упростить режимы обучения и обеспечить приемлемую точность аппроксимации и идентификации. Алгоритм реализован при оценивании параметров расходной характеристики судна с известной структурой модели потребления топлива по соответствующему статистическому ряду при заданном начальном приближении. Алгоритм может быть применим для идентификации параметров моделей характеристик расхода энергоресурсов как на судах, так и в целом в отрасли внутреннего водного транспорта при вычислении целевых индикаторов и показателей ее развития.