Реакция тонкой прямоугольной полосы на воздействие механической (в плоскости объекта) нагрузки и температурного поля рассматривается в постановки плоской задачи теории упругости. Основу решения составляет применение метода Сен-Венана-Пикара-Банаха интегрирования уравнений теории упругости тонкостенны систем (SVPB). Метод сочетает в себе итерационный и асимптотический подходы и обладает большей свободой от ограничивающих решение допущений.
Первой особенностью является переход к последовательному интегрированию исходных уравнений. Соотношения выстраиваются таким образом, что результат предшествующего используется в последующем выражении как известная величина. Введение начального приближения позволяет рассматривать такую последовательность как итерационный оператор метода последовательных приближений. Выбор в качестве начального неизвестных функций, определяемых (уточняемых) в процессе решения отвечает идее полу-обратного метода Сен-Венана, расширяя его трактовку до итерационной.
Исключение операторов дифференцирования по координате толщины в уравнениях интегрированием включает в состав итерационного оператора операторов интегрирования соотносимых с операторами Пикара метода решения дифференциальных уравнений первого порядка, разрешенных относительно производной (также являющегося итерационным).
Последовательное применение итерационного оператора дает интегралы (форму решения для неизвестных задачи) в виде асимптотических радов по малом параметру тонкостенности. Погрешность решения оценивается степенью малого параметра (являющегося сколь угодно малой величиной) старшего члена отбрасываемой части ряда. Существование и единственности решения определяются принципом сжатых отображений (теоремой Банаха о неподвижной точке).
Полученные интегралы (итерационные приближения для функций напряженно-деформированного состояния) применяются для выполнения граничных условий задачи. В результате этого определяются основные неизвестные задачи (произволы интегрирования, к числу которых относятся функции начального приближения).
SVPB является аналитическим методом, и асимптотический подход применяется обычно также для вычленения из уравнений доступных соотношений, характеризующих составляющие решения с определенными свойствами (в частности, быстро и медленно меняющихся компонент, отвечающих за краевой эффект и основное решение). При решении рассматриваемой задачей вид решения для основных неизвестных получен путем прямых преобразований без применения асимптотических гипотез. Для первой итерации проведено сопоставление с асимптотическим решением. Решение дополнено результатами, полученными на соотношениях следующей итерации.