Работы автора

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ФОРМИРУЕМОМ МЕТАЛЛИЧЕСКОМ СЛОЕ С ИСПОЛЬЗОВАНИЕМ ПОДВИЖНОГО ЛАЗЕРНОГО ИСТОЧНИКА ЭНЕРГИИ (2024)

Рассматривается быстропротекающий трехмерный процесс консолидации слоя металла, сформированного с использованием аддитивной лазерной технологии. В основу математической модели положены уравнения равновесия с вязкоупрогопластической реологической моделью и уравнение энергии с учетом диффузионных, конвективных и радиационных потерь. Численное решение задачи производится методом конечных элементов с использованием адаптационного алгоритма построения сеточной области в функции от градиента температуры в несвязанной постановке с решением дискретных уравнений нестационарной теплопроводности и термомеханики. Алгоритм учитывает движение источника тепла с заданной скоростью путем применения технологии «исключения» и последующего «возрождения» части материала. Непрерывное наращивание материала производится дискретно, на каждом шаге расчета, соответствующем «возрождению» очередной подобласти из «исключенных» элементов. Проводится верификация и валидация численного алгоритма. Показано влияние последовательной стратегии наращивания пяти слоев металла на распределение эффективных напряжений.

Издание: ДАЛЬНЕВОСТОЧНЫЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
Выпуск: № 1 (2024)
Автор(ы): Гриценко Александр, Чехонин Константин Александрович
Сохранить в закладках
ТРЕХМЕРНОЕ КОНЕЧНО-ЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ РАСПЛАВА МЕТАЛЛА СО СВОБОДНОЙ ПОВЕРХНОСТЬЮ В УСЛОВИЯХ ДВИЖУЩЕГОСЯ ЛАЗЕРНОГО ИСТОЧНИКА (2024)

Рассматривается трехмерный конвективный тепломассоперенос в ванне расплава металла под действием движущегося лазерного источника тепла. В основу математической модели с лагранжевым описанием положены уравнения Навье-Стокса, неразрывности и энергии с учетом диффузионных, конвективных и радиационных тепловых потерь. Зависящие от температуры поверхностные эффекты учитываются с использованием поверхностного натяжения (сил Марангони) при динамическом контактном угле на движущейся линии трехфазного контакта. Численное решение задачи производится методом конечных элементов с дивергентно устойчивой аппроксимацией основных переменных. Интегрирование кинематических и динамических условий на свободной поверхности производится по схеме Ньюмарка-Бассака. Производится верификация и валидация предложенного численного алгоритма. Показано влияние определяющих параметров процесса (мощности и скорости сканирования лазера) на геометрические размеры ванны с расплавом.

Издание: ДАЛЬНЕВОСТОЧНЫЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
Выпуск: № 1 (2024)
Автор(ы): Белозеров Николай Игоревич, Чехонин Константин Александрович
Сохранить в закладках