Цель – моделирование электрического поля в межэлектродном зазоре в условиях электрохимического формообразования полости тонкостенной детали ракетно-космической техники. В исследованиях использовалось моделирование процесса электрохимического формообразования полости при постоянном напряжении в стационарном режиме в среде COMSOL Multiphysics. Моделирование проводилось для схемы электрохимического формообразования с подвижным катодом с вертикальной и горизонтальной подачей к обрабатываемой поверхности заготовки с поддержанием постоянного межэлектродного зазора. Условия моделирования были приняты следующие: материал трубки катода – нержавеющая сталь 12Х18Н10Т; материал тонкостенной детали – алюминиевый сплав АМг6; электролит – раствор NaNO3. При моделировании электрического поля в межэлектродном зазоре учитывался процесс теплообмена. В ходе моделирования электрического поля при электрохимическом формообразовании полости тонкостенной детали был получен макрос, который позволяет адаптировать моделирование процесса под разные входные условия процесса. В результате моделирования были получены следующие картины распределения: плотности тока в катоде, потенциалов, электрического поля в межэлектродном зазоре и прилегающей к нему области, температуры процесса электрохимического формообразования. Согласно результатам моделирования, установлено, что линии электрического поля направлены к катоду от периферии заготовки. Это означает, что в заданной области происходит анодное растворение материала, что характеризует закон распределения потенциалов в электрохимической ячейке. Согласно полученной при моделировании картине распределения температуры установлено, что ее повышение в зоне обработки незначительное. Показано, что увеличение температуры электролита приводит к пропорциональному увеличению температуры стенки. Таким образом, проведенное исследование дает теоретическое представление изучаемого процесса.
Для отделочных операций применяются комбинированные методы обработки, в том числе электроалмазная обработка. Этот метод имеет следующие недостатки: засаливание электрода-инструмента, скругление режущей кромки, изменение микротвердости, микрорастравливание, отклонение формы обрабатываемой поверхности. В ранее проведенных исследованиях электроалмазной обработки основное внимание уделено вопросам засаливания алмазного шлифовального круга, удельному расходу круга и состоянию поверхности. Для выявления причин появления недостатков (микрорастравливание поверхности детали) проведен анализ источников тока в электрохимической системе. Результаты исследований показали, что плотности токов от гальванических элементов, образованных между катодом-инструментом и анодом-заготовкой и между фазами обрабатываемой заготовки, на порядок меньше плотности технологического тока. Такие токи за время обработки не более 3 мин не могут привести к микрорастравливанию. Этот дефект может возникнуть при длительном хранении деталей во влажной среде. По результатам работы были определены размеры моделируемой системы, в частности, максимальный рекомендуемый межэлектродный зазор 0,1 мм и область влияния разнородности контактов на электрохимический процесс в пределах 5-6 мм. При электроалмазной обработке в зазоре между инструментом и деталью образуется металлическая стружка, которая способствует увеличению напряженности электрического поля выше критического значения, что приводит к пробою межэлектродного зазора и появлению электрической эрозии. Кроме того, стружка может создать металлический мостик, в результате чего появляется локальный электроконтактный процесс. Эти явления приводят к образованию жидкого металла. Проведенные исследования показали, что причиной засаливания является образование жидкого металла и его налипание на медную поверхность.