Работы автора

ПОСТРОЕНИЕ ТРЕНИРОВОЧНОЙ ОБУЧАЮЩЕЙ ВЫБОРКИ НА ОСНОВЕ ХАУСДОРФОВОЙ МЕТРИКИ В ПРОСТРАНСТВЕ СЕЙСМОГРАММ ДЛЯ ПОДАВЛЯЮЩЕЙ ЧИСЛЕННУЮ ДИСПЕРСИЮ НЕЙРОННОЙ СЕТИ (2023)

Предложена стратегия построения обучающего набора данных для подавляющей численную дисперсию нейронной сети NDM-net (numerical dispersion mitigation network), заключающаяся в расчете полного набора сейсмограмм методом конечных разностей на грубой сетке и в расчете обучающей выборки с применением более мелкой сетки. Обучающая выборка представляет собой малый набор сейсмограмм с определенным пространственным размещением источников волнового поля. После обучения сеть NDM-net позволяет аппроксимировать низкокачественные сейсмограммы, рассчитанные на грубой сетке, в сейсмограммы с меньшим шагом дискретизации. Оптимизация процесса построения репрезентативной обучающей выборки сейсмограмм основана на минимизации метрики Хаусдорфа между обучающей выборкой и полным набором сейсмограмм. Применение нейронной сети NDM-net позволяет уменьшить временные затраты при расчетах волновых полей на мелкой сетке.

Издание: ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ
Выпуск: Т. 24 № 2 (2023)
Автор(ы): Гадыльшина К. А., Вишневский Дмитрий Михайлович, Гадыльшин Кирилл Геннадьевич, Лисица Вадим Викторович
Сохранить в закладках