Работы автора

НАУЧНОЕ СРАВНЕНИЕ СВЕРТОЧНЫХ И РЕКУРРЕНТНЫХ НЕЙРОННЫХ СЕТЕЙ И МАКСИМАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ИХ ВОЗМОЖНОСТЕЙ В ФАЗОВЫХ АНТЕННЫХ РЕШЕТКАХ ДЛЯ МОНИТОРИНГА АТМОСФЕРЫ СРЕДСТВАМИ РАДИОЗОНДИРОВАНИЯ (2024)

В данной статье рассматривается использование двух основных типов глубоких нейронных сетей (DNN) - сверточных (CNN) и рекуррентных нейронных сетей (RNN), где проводится подробное сравнение каждой из них и того, как они могут быть оптимально использованы для синтеза многолучевой диаграммы направленности в фазированной антенной решетке (PAA) для мониторинга атмосферных радиозондовых средств. Показано, что DNN может одновременно использоваться в качестве вычислителя направлений прихода электромагнитных волн, например, от пилотируемого воздушного шара и нескольких беспилотных метеорологических зондов (UMP), перемещающихся в пространстве. При выборе между RNN и CNN выбор подходящей нейронной сети зависит от типа доступных данных и требуемых результатов. В то время как RNN используются в основном для классификации текста, CNN помогают идентифицировать и классифицировать изображения. Между ними много различий, но это не значит, что они взаимоисключающие. RNN и CNN CNN можно использовать вместе, чтобы воспользоваться их преимуществами.

Издание: T-COMM: ТЕЛЕКОММУНИКАЦИИ И ТРАНСПОРТ
Выпуск: Т. 18 № 1 (2024)
Автор(ы): Казанцев Сергей, Ахмад Али, Хасанн Диаа, Николаев Алексей Владимирович
Сохранить в закладках