В настоящей работе исследуется симметрические потоки Риччи на трехмерных группах Ли с левоинвариантной римановой метрикой.
Статья посвящена исследованию инвариантных солитонов Риччи на трехмерных группах Ли с левоинвариантной (псевдо)римановой метрикой и полусимметрической связностью.
В настоящей работе исследуется уравнение Эйнштейна вида Symr = Лg где Symr - симметрическая часть тензора Риччи, g - метрический тензор, Л - некоторая константа на трехмерных группах Ли с левоинвариантной римановой метрикой и полусимметрической связностью.
В работе исследованы инвариантные солитоны Риччи - важный подкласс в классе однородных солитонов Риччи. Получена классификация инвариантных солитонов Риччи на трехмерных группах Ли с левоинвариантной римановой метрикой и полусимметрической связностью, отличной от связности Леви-Чивиты.
В данной работе по построенной математической модели в средах пакетов прикладных программ Maxima и SageMath разработана компьютерная модель, позволяющая определять кривизну и кручение кривой
В настоящей работе исследуются римановы многообразия, метрическая связность которых является связностью с векторным кручением. В данный класс связностей попадает связность Леви-Чивиты. Хотя тензор кривизны этих связностей не обладает симметриями тензора кривизны связности Леви-Чивиты, но представляется возможным определить секционную кривизну [10]. Показано, что; функция дельта - защемленности секционной кривизны компактной связной группы Ли G с биинвариантной римановой метрикой и связностью с векторным кручением принимает значения δ(||V||) ∈ (0, 1].
Данная работа посвящена изучению собственных значений оператора Риччи на четырехмерных локально однородных (псевдо)римановых многообразиях с четырехмерной подгруппой изотропии.
В настоящей работе в среде универсальной математической системы Maxima разработан комплекс программ, позволяющий по заданному векторному параметрическому уравнению регулярной поверхности класса C k определять ее I, II, III квадратичные формы; гауссову(полную) и среднюю кривизны; асимптотические линии и линии кривизны.
В работе освящен вопрос использования систем компьютерной математики при исследовании гладких регулярных кривых. В системах прикладных программ Maxima и SageMath разработаны алгоритмы, позволяющие вычислять кривизну и кручение кривой по заданным входным параметрам - векторному уравнению кривой.
Среди свободно распространяемых универсальных математических систем особое место занимают Maxima и SageMath. В статье приводится авторская реализация компьютерных моделей в среде данных пакетов прикладных программ, позволяющая определять первую и вторую квадратичные формы поверхности.
Статья посвящена исследованию инвариантных солитонов Риччи на трехмерных неунимодулярных группах Ли с левоинвариантной римановой метрикой и полусимметрической связностью.
В работе исследуется тензор кривизны 3-мерных унимодулярных групп Ли с полусимметрической связностью и левоинвариантной римановой метрикой, удовлетворяющей симметрическому уравнению Эйнштейна.