Физики создали компактные фотонно-электронные чипы, обеспечивающие передачу 800 гигабайт данных в секунду
1/2
Назад
Ученые смогли собрать трехмерный фотонно-электронный чип, быстро и энергетически дешево передающий данные. Ученые говорят, что их разработка может обеспечить технологиям искусственного интеллекта давно необходимые параметры аппаратуры для вычислений.
Ученые смогли собрать трехмерный фотонно-электронный чип, быстро и энергетически дешево передающий данные. Ученые говорят, что их разработка может обеспечить технологиям искусственного интеллекта давно необходимые параметры аппаратуры для вычислений.
Ученые и инженеры ищут решения этих проблем, чтобы сделать ИИ более доступным, быстрым и экологичным инструментом. Одним из таких решений может стать интеграция фотонных технологий, которые позволяют передавать данные с помощью света, что значительно увеличивает скорость и снижает энергопотребление.
Исследователи из Колумбийского университета (США) создали трехмерную фотонно-электронную платформу, обеспечивающую беспрецедентную энергоэффективность и плотность пропускной способности. Устройство обеспечивает пропускную способность 800 гигабит в секунду с энергоэффективностью 120 фемтоджоулей на бит. Детали работы опубликованы в журнале Nature Photonics.
Ученые смогли объединить фотонику с комплементарной металл-оксид-полупроводниковой (КМОП, CMOS) электроникой. Это решение преодолевает давний энергетический барьер, который ограничивал перемещение данных в традиционных компьютерных системах и системах ИИ.
Трехмерный фотонно-электронный чип содержит 80 фотонных передатчиков и приемников в компактном корпусе. При плотности пропускной способности 5,3 терабит в секунду на квадратный миллиметр это решение значительно превосходит аналоги. Эффективность использования энергии — по 50 и 70 фемтоджоулей на передаваемый бит с передающих и приемных интерфейсов соответственно, работающих на скорости 10 гигабит в секунду на канал.
Кроме того, созданная учеными конструкция совместима с коммерческими стандартами изготовления на современных КМОП-производствах, использующих пластины размером 300 миллиметров. Это открывает путь для широкого и быстрого внедрения предложенной конструкции чипа в реальное производство.
Новый чип позволяет системам ИИ эффективно передавать большие объемы данных, достаточные для поддержания вычислений на распределенных архитектурах. Раньше это было невозможно из-за ограничений электроники по затратам энергии и задержкам передачи сигнала. Найденное учеными решение может применяться и для высокопроизводительных вычислений, телекоммуникаций и систем с распределенной памятью, а не только для работы ИИ.
Физики создали компактные фотонно-электронные чипы, обеспечивающие передачу 800 гигабайт данных в секунду
Ученые смогли собрать трехмерный фотонно-электронный чип, быстро и энергетически дешево передающий данные. Ученые говорят, что их разработка может обеспечить технологиям искусственного интеллекта давно необходимые параметры аппаратуры для вычислений.
Ученые смогли собрать трехмерный фотонно-электронный чип, быстро и энергетически дешево передающий данные. Ученые говорят, что их разработка может обеспечить технологиям искусственного интеллекта давно необходимые параметры аппаратуры для вычислений.
Ученые и инженеры ищут решения этих проблем, чтобы сделать ИИ более доступным, быстрым и экологичным инструментом. Одним из таких решений может стать интеграция фотонных технологий, которые позволяют передавать данные с помощью света, что значительно увеличивает скорость и снижает энергопотребление.
Исследователи из Колумбийского университета (США) создали трехмерную фотонно-электронную платформу, обеспечивающую беспрецедентную энергоэффективность и плотность пропускной способности. Устройство обеспечивает пропускную способность 800 гигабит в секунду с энергоэффективностью 120 фемтоджоулей на бит. Детали работы опубликованы в журнале Nature Photonics.
Ученые смогли объединить фотонику с комплементарной металл-оксид-полупроводниковой (КМОП, CMOS) электроникой. Это решение преодолевает давний энергетический барьер, который ограничивал перемещение данных в традиционных компьютерных системах и системах ИИ.
Трехмерный фотонно-электронный чип содержит 80 фотонных передатчиков и приемников в компактном корпусе. При плотности пропускной способности 5,3 терабит в секунду на квадратный миллиметр это решение значительно превосходит аналоги. Эффективность использования энергии — по 50 и 70 фемтоджоулей на передаваемый бит с передающих и приемных интерфейсов соответственно, работающих на скорости 10 гигабит в секунду на канал.
Кроме того, созданная учеными конструкция совместима с коммерческими стандартами изготовления на современных КМОП-производствах, использующих пластины размером 300 миллиметров. Это открывает путь для широкого и быстрого внедрения предложенной конструкции чипа в реальное производство.
Новый чип позволяет системам ИИ эффективно передавать большие объемы данных, достаточные для поддержания вычислений на распределенных архитектурах. Раньше это было невозможно из-за ограничений электроники по затратам энергии и задержкам передачи сигнала. Найденное учеными решение может применяться и для высокопроизводительных вычислений, телекоммуникаций и систем с распределенной памятью, а не только для работы ИИ.
2 фото: a — Иллюстрация 3D-интегрированной фотонно-электронной системы, b — Фото 80-канальных массивов фотонных устройств, c — Изображения фотонных и электронных чипов. Активные фотонные схемы выделены белым, вне фотонного чипа — разветвление оптических / электрических дорожек для соединения оптоволокна и проводов. Ярко-голубым выделен четырехканальный волновод передатчика и приемника. На вставке: схема соединения волокна с чипом, d — Изображение поперечного сечения связанного электронного и фотонного чипа, сканирующая электронная микроскопия, e — Приемопередатчик, соединенный с печатной платой и оптически связанный с волоконной матрицей, 10 центов США для масштаба, f — Схема поперечного сечения электронных и фотонных чипов © Nature Photonics, 2025.DOI: 10.1038/s41566-025-01633-0
Источник: https://naked-science.ru/article/physics/photon-electron-chip-for
фотоника передача_данных энергоэффективность фотонно_электронный_чип