Архив статей журнала
Настоящая работа предлагает концепцию интеллектуального анализа динамических данных в приложении к исследованию сердечных ритмов по диагностике электрокардиограммы: нормальный ритм, предсердная и желудочковая экстрасистолии, блокада левой и правой ножки пучка Гиса. В основе методологии лежит гибридизация подходов: численная оценка мультифрактальных и спектральных характеристик, а также использование машинного обучения для классификации сигналов. Исходные данные представлены сложными нестационарными временными рядами, прошедшими детектирование QRS-комплекса методом Пана-Томпкинса, вейвлет-фильтрацию и нормализацию. Целевые методы мультифрактального флуктуационного анализа, Фурье- и вейвлет-преобразования реализованы в виде программных модулей в ППП Matlab. Показана чувствительность методов к выявлению скрытых свойств сигналов ЭКГ и диагностическая способность к выявлению типа ритма. Установлены спектральные и мультифрактальные характеристики сердечных ритмов и аритмий. Модели машинного обучения SVM и KNN обучены и применены с использованием средств языка программирования Python, с вычисленной точностью 95.9% и 97.7%.
В работе исследовано важное свойство метода наименьших модулей (англ. least absolute deviation, LAD) при разработке линейной регрессионной зависимости, в соответствии с которым число нулевых ошибок аппроксимации равно числу оцениваемых параметров модели. Предложен алгоритмический способ наделения этим свойством других методов оценивания параметров путем ввода в рассмотрение булевых переменных и формирования некоторых ограничений на ошибки при оптимизации соответствующих функций потерь. Реализация разработанной вычислительной схемы продемонстрирована на формировании задачи линейно-булева программирования для метода антиробастного оценивания параметров. Рассмотрен численный пример, связанный с построением модели добычи газа на опытно-промышленной установке УПГ-102 Ковыктинского газоконденсатного месторождения . В качестве независимых переменных при этом задействованы: приход водометанольного раствора, рабочее давление сепараторов С101 и С102б.