Архив статей журнала
Цель – выработка и обоснование комплекса технико-экономических требований для подготовки в условиях импортозамещения задания на проектирование отечественной сверлильной машины с автоматической подачей. Объектами исследований для сравнения явились сверлильные машины с автоматической подачей, выпускаемые фирмами Atlas Copco, Desoutter и Recoules. По аналогии с существующими сверлильными машинами с автоматической подачей для проектируемой машины установлены ограничения предельный вес до 6 кг и габаритные размеры до 320х110х450 мм. Выбор электродвигателей приводов вращения шпинделя и его осевой подачи проведен на основе примера обработки твердосплавным сверлом отверстия диаметром 12 мм в типовом смешанном пакете толщиной 58 мм из листов стали марки 30ХГСА, полимерных композиционных материалов на основе углепластика, титанового сплава марки Вт6 и алюминиевого сплава марки 1933. Требуемая мощность электродвигателей определена с использованием режимов резания, выбранных из действующих справочников и данных, полученных при натурных испытаниях сверления смешанного пакета на станке DMC 635 V с динамометрической плитой Kistler Type 9123CQ05. Осциллограммы осевой силы и крутящего момента показали, что наибольшее силовое сопротивление возникает при сверлении титанового сплава. Рассчитаны и подтверждены следующие величины для проектируемой сверлильной машины с автоматической подачей: требуемая мощность электрических приводов – 1,5 кВт (для привода подачи), 2,8 кВт (для привода вращения шпинделя). Максимальная требуемая частота вращения 1940 об/мин, максимальная требуемая подача 4,5 мм/об. Для дробления стружки и подавления возможных автоколебаний сверла предложено использовать создаваемые системой числового программного управления модуляции скоростей подачи и вращения шпинделя. В дальнейших исследованиях планируются изготовление опытного образца и испытание сверлильной машины с автоматической подачей, спроектированной по выданным рекомендациям.
Цель – анализ и выбор новых материалов на этапе конструкторской подготовки производства изделий из композитов для замены общепринятых конструкционных металлов. В работе использовалась методика многокритериального анализа мультивариантных систем, основанная на матричном анализе. В качестве параметров сравнения, используемых в методике, могут выступать общеизвестные справочные данные, рекомендации по результатам научных исследований материалов, технико-экономические и качественные параметры методов формообразования изделий из этих материалов с учетом их специфических свойств. Проведен сравнительный анализ восьми разных материалов для конструирования изделий из полимерных композитов, ориентированный на замену общепринятых конструкционных материалов, при трех условиях сопоставимости. Первое условие – учет всех выбранных для сравнения физико-механических свойств материалов и их стоимости. При втором условии сопоставимости акцент сделан на пределы прочности материала, модуль упругости и стоимость. При третьем условии сопоставимости условия частично схожи со вторым условием, за исключением предела прочности на сжатие. Установлено, что наиболее рациональным композитом для конструирования изделий при первом и втором условии сопоставимости является базальтопластик, у которого наибольшее значение весового критериального коэффициента (q) в первом случае равно 0,3947, а во втором – 0,3955. При третьем условии сопоставимости оптимальным вариантом композиционного материала стал также углепластик, у которого достигнуто наибольшее значение q = 0,3341. Предложенная методика позволяет производить анализ и выбор не только материала для изготовления изделий, но и инструментального материала, режимов резания и геометрии инструмента с учетом накопленной в результате эмпирических исследований базы знаний. Произведена апробация разработанной методики при трех условиях сопоставимости. В результате проведенных теоретических исследований установлено, что применение разработанной методики может повысить эффективность подготовки производства
Цель – исследование напряженно-деформированного состояния поверхностного слоя детали из алюминиевого сплава ВТ95 при дробеударной обработке и последовательности операций «дробеударная обработка – зачистка лепестковым кругом». Объектами исследования являются крупногабаритные детали типа панелей и обшивок сложной формы, применяемые в самолето-, ракето- и судостроении. При разработке методики определения остаточных напряжений использовалось компьютерное моделирование в программном комплексе Ansys Workbench 19.0. В результате моделирования изучаемых процессов обработки получено наглядное представление характера формирования остаточных напряжений, физические значения и графики распределения последних. Установлено, что характер распределения остаточных напряжений после выполнения двух видов обработки схож. Максимальное значение остаточных напряжений, полученных в результате выполнения дробеударной обработки поверхности детали дробью диаметром 3,0 мм при скорости удара дроби 25 м/с, достигает порядка 600 МПа при глубине залегания 1,0 мм. После дробеударной обработки выполняется зачистка лепестковым кругом, в конечно-элементном моделировании, представленном в виде набора абразивных зерен со скоростью 18,316 м/с. Показано, что удаление в процессе зачистки с поверхности пластины слоя 25, 50 и 75 мкм способствует срезанию верхней части эпюры остаточных напряжений и, как следствие, к уменьшению значений остаточных напряжений в технологической последовательности «дробеударная обработка – зачистка» до 400 МПа. Также установлено, что по мере увеличения толщины снятого с поверхности детали слоя при зачистке величина остаточных напряжений сокращается медленнее. При этом независимо от толщины снимаемого слоя при зачистке, глубина залегания сжимающих остаточных напряжений практически не изменена (около 0,7 мм). Разработанная конечно-элементная модель позволяет прогнозировать и контролировать уровень и величину остаточных напряжений в образце из алюминиевого сплава еще на стадии технологической подготовки для операций «дробеударная
- 1
- 2