Определение основных технических параметров проектируемой сверлильной машины с автоматической подачей (2024)
Цель – выработка и обоснование комплекса технико-экономических требований для подготовки в условиях импортозамещения задания на проектирование отечественной сверлильной машины с автоматической подачей. Объектами исследований для сравнения явились сверлильные машины с автоматической подачей, выпускаемые фирмами Atlas Copco, Desoutter и Recoules. По аналогии с существующими сверлильными машинами с автоматической подачей для проектируемой машины установлены ограничения предельный вес до 6 кг и габаритные размеры до 320х110х450 мм. Выбор электродвигателей приводов вращения шпинделя и его осевой подачи проведен на основе примера обработки твердосплавным сверлом отверстия диаметром 12 мм в типовом смешанном пакете толщиной 58 мм из листов стали марки 30ХГСА, полимерных композиционных материалов на основе углепластика, титанового сплава марки Вт6 и алюминиевого сплава марки 1933. Требуемая мощность электродвигателей определена с использованием режимов резания, выбранных из действующих справочников и данных, полученных при натурных испытаниях сверления смешанного пакета на станке DMC 635 V с динамометрической плитой Kistler Type 9123CQ05. Осциллограммы осевой силы и крутящего момента показали, что наибольшее силовое сопротивление возникает при сверлении титанового сплава. Рассчитаны и подтверждены следующие величины для проектируемой сверлильной машины с автоматической подачей: требуемая мощность электрических приводов – 1,5 кВт (для привода подачи), 2,8 кВт (для привода вращения шпинделя). Максимальная требуемая частота вращения 1940 об/мин, максимальная требуемая подача 4,5 мм/об. Для дробления стружки и подавления возможных автоколебаний сверла предложено использовать создаваемые системой числового программного управления модуляции скоростей подачи и вращения шпинделя. В дальнейших исследованиях планируются изготовление опытного образца и испытание сверлильной машины с автоматической подачей, спроектированной по выданным рекомендациям.
Идентификаторы и классификаторы
- Префикс DOI
- 10.21285/1814-3520-2024-2-224-237
В последние годы в конструкциях несущих элементов летательных аппаратов (ЛА), например, крыльях, стали широко применять смешанные пакеты листов из разнородных
авиационных материалов: алюминиевых и титановых сплавов, стали и углепластика [1].
При относительно небольшой массе эти пакеты обеспечивают высокую нагрузочную
способность несущих элементов. Стыковку узлов, изготовленных из смешанных пакетов, выполняют обычно посредством многорядного болтового или заклепочного соединений. В качестве примера можно привести соединение центроплана ЛА с консолью крыла. Для обеспечения требуемой точности взаимного расположения соединяемых узлов разделку отверстий под болты производят на сборочном участке, ограниченная площадь которого не позволяет разместить крупногабаритное металлорежущее оборудование. В авиастроении на начальном этапе использования смешанных пакетов отверстия в них сверлили и разделывали при помощи ручных пневматических дрелей [2]. При этом качество получаемых отверстий полностью зависело от квалификации рабочего. При ручной подаче неравномерность осевого усилия повышала шероховатость обработанной поверхности [3] и приводила к расслаиванию углепластика, входящего в состав пакета [4]. Высокий уровень брака при выполнении сверлильных операций приводил к увеличению времени сборки узлов и повышал себестоимость изготовления ЛА [5]. Для устранения указанных недостатков был создан новый, более технологичный тип ручного инструмента – сверлильная машина с автоматической подачей (СМАП)4. Применение этого инструмента позволило частично автоматизировать процесс обработки отверстий в смешанных пакетах на этапе стапельной сборки и снизить количество бракованных изделий. Перед сверлением СМАП закрепляют на смешанном пакете через кондуктор при помощи байонетного механизма. Сам кондуктор предварительно устанавливают на обрабатываемую поверхность с использованием болтов [6].
Список литературы
- Соколова О.Ф., Шарипова Д.Р. Композитные материалы в космической и авиационной промышленности // Проблемы и перспективы экономических отношений предприятий авиационного кластера: сб. науч. тр. VIII Всерос. науч. конф. (г. Ульяновск, 24-26 октября 2023 г.). Ульяновск: Ульяновский государственный технический университет, 2023. С. 15-18. EDN: AFLZLN.
- Ширинкин В.В., Макаров В.Ф., Мешкас А.Е. Наукометрическое исследование проблем сверления композиционных материалов // Аэрокосмическая техника, высокие технологии и инновации. 2015. Т. 1. С. 289-298. EDN: VRRBET.
- Козочкин М.П., Мамотько А.И., Маслов А.Р. Исследование процесса сверления лонжерона лопасти винта из слоистого полимерного композита // Вестник Московского государственного технологического университета «Станкин». 2017. № 4. С. 68-72. EDN: ZUKBML.
- Завацкая Т.В., Кротенко А.Е., Иванов Ю.Н. Сверление и контроль отверстий в пакетах «титановый сплав- углепластик» // Жизненный цикл конструкционных материалов: сб. тр. XII Всероссийской науч.-техн. конф. (г. Иркутск, 6 июня 2022 г.). Иркутск: Иркутский национальный исследовательский технический университет, 2022. С. 209-215. EDN: CVDQBN.
- Чащин Н.С. Чистовая обработка отверстий в смешанных пакетах // Авиакосмические технологии (АКТ-2018): труды XIX Междунар. науч.-техн. конф. и школы молодых ученых, аспирантов и студентов (г. Воронеж, 18-19 октября 2018 г.). Воронеж: ООО Фирма «Элист», 2018. С. 262-266. EDN: YXXZRJ.
- Пикалов А.А., Чайников К.К. Применение специальной технологической оснастки и гибких сверлильных шаблонов для сверлильных машин с автоматической подачей режущего инструмента // Известия Самарского научного центра РАН. 2016. Т. 18. № 1-2. С. 260-263. EDN: WLWZBD.
- Свинин В.М., Шутенков А.В., Ястребов С.В. Анализ конструкций и технологических требований к сверлильным машинам с автоматической подачей для авиационного производства // Жизненный цикл конструкционных материалов (от получения до утилизации): материалы XIII Всерос. науч.-техн. конф. с междунар. участием (г. Иркутск, 16 мая 2023 г.). Иркутск: Иркутский национальный исследовательский технический университет, 2023. С. 38-43.
- Пашков А.Е., Иванов Ю.Н., Чащин Н.С., Иванова В.О. Оценка эффективности использования твердосплавного и алмазного инструмента для обработки отверстий в смешанных пакетах // Системы. Методы. Технологии. 2017. № 4. С. 60-66. https://doi.org/10.18324/2077-5415-2017-4-60-66. EDN: ZWZWYV.
- Стуров А.А. Повышение эффективности обработки отверстий в многослойных пакетах // Молодежный вестник Иркутского государственного технического университета. 2016. № 1. С. 7. EDN: VRWXUB.
- Чащин Н.С., Иванов Ю.Н., Никонович В.В. Сухая чистовая обработка отверстий в смешанных пакетах ступенчатым инструментом // Проблемы механики современных машин: сб. тр. VIII Междунар. конф. (оз. Байкал, 4-9 июля 2022 г.). Улан-Удэ: Восточно-Сибирский государственный университет технологий и управления, 2022. С. 235-242. https://doi.org/10.53980/9785907599055_235. EDN: GYFXXF.
- Вотинцева А.Б. Критерии выбора двигателя для беспилотного летательного аппарата // Молодой ученый. 2022. № 4. С. 45-47.
- Подураев В.Н. Обработка резанием с вибрациями. М.: Машиностроение, 1970. 350 с.
- Пат. № 2412023, Российская Федерация, С2, B23B 35/00, B23B 45/16. Способ вибросверления с мелкодисперсным дроблением стружки / В.Н. Старов, А.В. Масленников, А.И. Барботько. № 2008148738/02. Заявл. 10.12.2008; опубл. 20.02.2011. Бюл. № 5.
- Пат. № 1294498, СССР, В23В 47/04. Шариковый вибратор / Ю.В. Лебедев, Л.П. Лукьяненко. № 3915500/ 31-08. Заявл. 18.06.1985; опубл. 07.03.1987. Бюл. № 9.
- Пат. № 1590213, СССР, В23В 47/04, В23В 25/02. Шпиндельный узел / К.М. Рагульскис, Й.Б. Гудонис, Б.Б. Стульпинас, В.В. Юренас. № 4429368/31-08. Заявл. 24.05.1988; опубл. 07.09.1990. Бюл. № 33.
- Воронов С.А., Гуськов А.М., Иванов И.И., Барышева Д.В., Киселёв И.А. Существующие методы обеспечения низкочастотных вибраций инструмента с целью дробления стружки при сверлении глубоких отверстий // Наука и образование. 2014. № 12. С. 842-857. https://doi.org/10.7463/1214.0748342. EDN: TEVGVN.
- Roukema J.C., Altintas Yu. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation // International Journal of Machine and Tools Manufacture. 2007. Vol. 47. Iss. 9. P. 1455-1473. https://doi.org/10.1016/j.ijmachtools.2006.10.005.
- Svinin V.M., Savilov A.V., Shutenkov A.V. Software spindle speed variation as method for chatter suppression in drilling // Proceedings of the 5th International Conference on Industrial Engineering. Lecture Notes in Mechanical Engineering. 2020. P. 131-139. https://doi.org/10.1007/978-3-030-22063-1_15.
- Рызванович А.Я., Генералов В.А., Капралов В.В. Вибрационная обработка с крутильными колебаниями шпинделя // Вестник машиностроения. 2016. № 6. С. 31-35. EDN: WEZRFV.
- Рызванович А.Я., Генералов В.А. Повышение качества сверления отверстий малого диаметра применением вибрации // Вестник машиностроения. 2022. № 6. С. 78-83. https://doi.org/10.36652/0042-4633-20226-78-83. EDN: RIMAEL.
Выпуск
Другие статьи выпуска
Цель – разработка способа обжига сульфидных медь-мышьяксодержащих материалов для удаления мышьяка. Объектом исследования явились образцы «тонкой» пыли медеплавильного производства следующего состава, масс. %: 34,89 Zn; 20,02 Cu; 17,74 Pb; 17,07 Fe; 7,12 As; 0,92 Sb; 0,69 Sn; 0,63 Ca; 0,42 Mo; 0,34 K. Химический состав материалов анализировали с помощью энергодисперсионного рентгенофлуоресцентного спектрометра SHIMADZU EDX-7000, дифрактометра Bruker D8 Advance. Процесс обжига осуществляли в лабораторной трубчатой печи при температуре 550–800°С, продолжительности 60–120 мин, добавке в шихту FeS2 в количестве 25–50%. В результате проведенных лабораторных экспериментов были определены условия процесса, при которых остаточное содержание токсичного мышьяка в огарках составило до 0,3 масс. %: температура – 750–800°С, продолжительность – 1,5–2,0 ч (в инертной атмосфере), содержание пиритного концентрата в шихте – 30 масс. % . При этом извлечение As в газовую фазу достигает 91–96%. Показано, что для снижения температуры обработки до 600°С необходимо добавить в смесь медеплавильной пыли с пиритом восстановитель (отсев кокса) либо повысить долю пирита в навеске до 50 масс. % и выдержать смесь в течение 1,5–2,0 ч (в инертной среде – атмосфере аргона и азота – или при недостатке кислорода в дутье). При этом извлечение As в газовую фазу составляет до 97%. Рентгеноспектральный анализ полученного осадка на охлаждаемых концах кварцевых трубок печи при выходе газов, образующихся в результате обжига, показал, что данный материал преимущественно (до 93%) состоит из мышьяка. Получаемый огарок на 94 масс. % представлен соединениями железа, цинка, меди и свинца. Таким образом, получаемый в результате обжига «тонких» пылей медеплавильного производства огарок пригоден для возврата в процесс производства меди.
Цель – изучение распределения бора между кремнием и шлаком систем CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2, CaO-Al2O3-SiO2 в восстановительных условиях для определения принципиальной возможности и условий применения борсодержащих материалов для устранения ошлакования плавильной зоны при выплавке технического кремния в рудотермических печах. В качестве объекта исследования применялись модельные шлаки, полученные сплавлением оксидов марки ХЧ, а также сплавы на основе кремния с примесью бора. Кремний использовался качества 5N производства ТОО «Kazakhstan Solar Silicon». Сплавы с бором изготавливались самостоятельно сплавлением кремния с бором. Эксперименты проводились путем выдержки в графитовых тиглях шлака и сплавов в жидком состоянии при температуре 1600°С в слабо восстановительных условиях. Содержание бора в образцах шлака и кремния анализировалось методом масс-спектрометрии с индуктивно-связанной плазмой. В результате исследований установлено, что коэффициент распределения бора в вышеуказанных системах составляет от 2 до 2,5 во всей области расплавов этих систем при 1600°C. Показано, что коэффициент распределения бора уменьшается с увеличением содержания Al2O3 в трехкомпонентной системе CaO-Al2O3-SiO2, что согласуется с аналогичными данными, полученными другими авторами. Показано, что при использовании в экспериментах графитовых тиглей создаются восстановительные условия, приближенные к условиям рабочей подины рудотермической печи. Соответственно, это обеспечило получение более адекватных данных при прогнозировании равновесного содержания бора в кремнии (в сравнении с экспериментами, проводимыми в глиноземных тиглях другими авторами). Также установлено, что коэффициент распределения бора не зависит от содержания оксида магния в двойной (MgO-SiO2) и трехкомпонентной (CaO-MgO-SiO2) системах. Таким образом, полученные в исследованиях результаты позволяют исключить ограничения по содержанию бора в борсодержащих флюсах при выплавке технического кремния.
Целью исследования являлась адаптация технологии электрообезвоживания нефти применительно к каменноугольной смоле (побочного продукта при производстве кокса для доменной плавки) для удаления золы (фусов) и воды. Объектом исследований – каменноугольная смола, поступающая с коксовых батарей, которая с водой и золой образует коллоидную систему. В работе использовали метод электрообезвоживания, используемый в настоящее время для удаления воды из коллоидной системы нефть–вода. Рассмотрена конструкция электродегидратора 2-ЭГ-160-2, а также особенности подачи смолы в электродегидратор (в сравнении с подачей нефти). Показано, что в предлагаемом способе работы электродегидратора смола и фусы будут оседать в нижней части агрегата ввиду большей плотности воды (плотность смолы порядка 1200 кг/м3 и более). Предложена схема включения электродегидратора в схему обеззоливания на коксохимическом предприятии. Произведен расчет процесса разделения каменноугольной смолы в электродегидраторе. В результате полученных в ходе расчетов показателей можно сделать вывод, что производительность данного оборудования при обезвоживании смолы (в отличие от нефти) значительно снижается, что связано с большей плотностью и вязкостью смолы. Вследствие высокой вязкости смолы по сравнению с вязкостью нефти (при 80°С в ~ 40 раз) производительность электродегидратора по смоле составит ~40 тыс. т (для нефти ~ 1 млн т). Однако производительности в 40 тыс. т по одному электродегидратору достаточно, чтобы закрыть потребности по обезвоживанию каменноугольной смолы для АО «Уральская Сталь». В результате проведенных исследований предложено включение в общую схему обезвоживания каменноугольной смолы электродегидратора с целью достижения нормативных показателей смолы для дальнейшего ее применения и продажи в качестве целевого продукта. Благодарности. Данная работа выполнена в рамках проекта образовательно-производственных групп, реализуемых в сотрудничестве НФ НИТУ «МИСИС» и АО «Уральская Сталь».
Цель исследования – провести анализ актуальных проблем и методов, предлагаемых для решения задач проектирования, эксплуатации и планирования развития будущих устойчивых электроэнергетических систем с учетом интеграции возобновляемых источников энергии, объединения тепловых и газовых сетей с использованием высокоскоростных каналов связи. Излагается авторский метод обеспечения устойчивости системы и защиты целостности электроэнергетических систем. Для обеспечения устойчивой работы будущих электроэнергетических систем предлагается использовать методы многоуровневой оптимизации и управления цифровыми энергосистемами, технологии интеллектуальных сетей и методы обработки векторных измерений на основе кибербезопасных каналов связи. Установлено, что предложенные схемы позволяют обеспечить устойчивость системы и защитить ее целостность. С целью демонстрации эффективности таких подходов приведен пример решения задачи предотвращения веерных отключений энергосистемы путем целенаправленного разделения/изоляции системы на основе авторского двухэтапного алгоритма управляемой изоляции. Показано, что для решения поставленных задач современной электроэнергетики является эффективным использование новых телекоммуникационных технологий, средств обеспечения ситуационной осведомленности и схемы защиты целостности систем, основанных на современных методах исследования операций и искусственного интеллекта. Предложенный авторами метод многокритериальной оптимизации использует минимизацию целевой функции нарушения перетока мощности и учитывает ограничения на согласованность работы генераторов. Метод был протестирован на тестовой схеме IEEE, состоящей из 118 узлов. Тестовые расчеты подтвердили, что метод позволяет обеспечивать минимальный дисбаланс мощности и минимальное нарушение перетоков мощности. Таким образом, результаты работы открывают новые возможности для улучшения мониторинга и защиты будущих устойчивых электроэнергетических систем, в том числе с учетом интеграции возобновляемых источников энергии, тепловых и газовых сетей.
Цель исследований – разработка цифровых моделей систем тягового электроснабжения с нелинейной стационарной нагрузкой для определения несимметричных и несинусоидальных режимов. При их формировании применялись методы, основанные на использовании фазных координат и реализованные в программном комплексе Fazonord (версия 5.3.4.1–2024). В состав моделей входили следующие элементы: линии электропередачи 220 кВ, трансформаторы мощностью 40 МВ·А, тяговые сети 25 кВ двухпутных участков, преобразовательный агрегат, питающий систему электроснабжения промышленного транспорта. На основе разработанных моделей определены несимметричные и несинусоидальные режимы при движении поездов по рассматриваемому участку магистральной железной дороги. Показано, что за счет нелинейной стационарной нагрузки, создаваемой шестипульсным преобразователем, коэффициенты гармоник на вводах 10 и 220 кВ тяговой подстанции, питающей выпрямитель, увеличиваются и на шинах 10 кВ превышают 25%. Это следует учитывать при выборе средств снижения гармонических искажений. Показано, что для уменьшения уровней гармоник можно использовать следующие средства: пассивные фильтры, активные кондиционеры, электроподвижной состав нового поколения с четырехквадрантными преобразователями. Установлено, что максимумы коэффициентов несимметрии на шинах 10 кВ тяговых подстанций лежат в диапазоне 4,8…9%. Ввод этих показателей в допустимую область возможно осуществить путем применения пофазно управляемых источников реактивной мощности или симметрирующих трансформаторов. Таким образом, представленные модели дают возможность адекватно определять все параметры режима системы электроснабжения железной дороги переменного тока при наличии стационарных нагрузок с нелинейными вольтамперными характеристиками. Разработанная методика является универсальной и может использоваться для расчета режимов питающих и тяговых сетей различной структуры и конструктивного исполнения.
Цель – определить и проанализировать ключевые особенности агрегации микросетей в энергетические сообщества в зависимости от преобладания промышленных и бытовых нагрузок. В работе были использованы методы литературного обзора и мета-анализа в области планирования, моделирования и управления микроэнергетических систем и их сообществ. Также применялся методологический подход, сочетающий методы многокритериального принятия решений и искусственного интеллекта. Эффективность предлагаемого подхода продемонстрирована на примере образования двух типов энергетических сообществ, построенных применительно к реальным удаленным поселениям на побережье Японского моря, которые сочетают типично «жилые» нагрузки с промышленными. Получены результаты тестирования модели «Автономный диспетчер», построенной на основе аппарата двухуровневой оптимизации и алгоритма обучения с подкреплением Монте-Карло по поиску в дереве для оптимального экономического управления режимами работы потенциального энергетического сообщества. На нижнем уровне данной модели решается задача нахождения рыночного равновесия посредством минимизации функции общих эксплуатационных затрат. На верхнем – выбирается стратегия управления, дающая наилучшее распределение прибылей между членами сообщества. Исследовались два сценария объединения и работы микросетей поселков в энергетическом сообществе: промышленного и общественного типа. Проведенные исследования показали, что работа поселков в составе энергетических сообществ любого типа более выгодна (с экономической и экологической точек зрения), чем в индивидуальном режиме. Установлено, что при объединении поселков в энергетическое сообщество промышленного типа происходит более существенное снижение стоимости электроэнергии по показателю LCOE от нормированного значения, чем в аналогичном сообществе общественного типа (с 22 руб/кВт∙ч до 6 руб/ кВт∙ч – против 22 руб/кВт∙ч до 9 руб/кВт∙ч). Анализ приведенных характеристик разных типов энергетических сообществ может помочь также и проектировщикам определить возможности, особ
Цель – разработка и испытания прототипа интеллектуальной автоматики контроля успешности пусков асинхронных двигателей с короткозамкнутым ротором на физической модели локальной системы энергоснабжения. В прототипе реализован поэтапный прогностический контроль процесса, на каждом из которых на основе моделей критических параметров двигателя и питающей сети проверяются частичные условия его успешности. Разработка базируется на использовании программного комплекса LabVIEW, методов параметрической идентификации, физического моделирования, фильтрации аналоговых и цифровых сигналов, теории автоматического регулирования, математического анализа и статистики. Экспериментально доказана возможность и эффективность предиктивного контроля успешности пуска асинхронного двигателя в локальных системах энергоснабжения по величине, скорости и характуру изменения режимных параметров статорных обмоток двигателя без непосредственного измерения частоты вращения его вала. Показано, что погрешность разработанных моделей для определения критических параметров режима, определяющих успешность пуска асинхронного двигателя, не превышает 4%. Установлено, что погрешность прогностической оценки продолжительности пуска асинхронного двигателя не превышает 14%. Показано, что в 91% экспериментов с пусками асинхронного двигателя на физической модели локальной системы энергоснабжения при вариации схемно-режимных условий прототип автоматики достоверно идентифицировал успешность/неуспешность пуска двигателя на разных этапах процесса. При выявлении неуспешности прототип обеспечивал прерывание пусков на ранних стадиях. В результате проведенных исследований случаев отсутствия выдачи автоматикой команды на прерывание процесса пуска в условиях его неуспешности не зафиксировано. Таким образом, применение интеллектуальной автоматики контроля успешности пусков асинхронных двигателей в локальных системах энергоснабжения позволит снизить вероятности повреждения двигателей и оборудования питающих сетей, сохранить ресурс их работоспособности и повысить надежность
Цель – установить кинетические закономерности расплавления тепловыделяющего цилиндрического элемента в заведомо надкритических условиях с помощью численного моделирования. Объектом исследования является процесс плавления в однородном образце, выделяющем теплоту за счет протекания реакции или электромагнитного нагрева. Теплофизические свойства образца принимаются постоянными в пределах твердой и жидкой фаз. Основным инструментом исследования является численная модель, построенная на основе нестационарной задачи Стефана в тепловыделяющем теле и включающая описание процессов теплопроводности и плавления. Фазовый переход описывается в энтальпийном представлении. Для выбора параметров численной модели (шагов сетки) проводится исследование точности разностной схемы. В результате проведенных исследований получены расчетные зависимости основных характеристик плавления (время расплавления и максимальная температура образца в момент расплавления) от управляющих параметров (интенсивность тепловыделения, величина теплового эффекта плавления, отношение коэффициентов теплопроводности фаз). С помощью некоторых приближений (усреднение температуры, квазистационарное распределение) получены формулы для оценки времени расплавления исследуемого образца. Расчеты показали, что изменение теплофизических свойств образца (коэффициентов теплопроводности, теплового эффекта) оказывает существенное влияние на скорость его плавления. Установлено, что зависимость времени расплавления от интенсивности тепловыделения и теплового эффекта фазового перехода качественно совпадает с приближенными моделями, но существенно отличается от них количественно, особенно в области малых отклонений от критической интенсивности тепловыделения. Проведенные расчеты могут быть использованы при оценке термомеханической устойчивости материалов с внутренним тепловыделением. Разработанная численная модель дает возможность исследовать процессы плавления в широком диапазоне условий, в том числе при изменении граничных условий.
Цель исследования – выполнить анализ моделей и механизмов выбора состава включенного генерирующего оборудования, которые используются в работе оптового рынка электроэнергии и мощности в России и других странах, а также рассмотреть методы и критерии учета ограничений по системной надежности в этих моделях. Объектом исследования выступают энергетические системы: оптовые рынки электроэнергии и мощности в России, Великобритании, странах Европейского союза, Австралии и Соединенных Штатах Америки. В основу исследований легли подход, сбор и проведение аналитического обзора различных источников научной информации. Рассмотрены основные положения функционирования оптового рынка электроэнергии и мощности в различных странах, основные механизмы регулирования процессов в рамках решения оптимизационной задачи выбора состава включенного генерирующего оборудования, изучена и проанализирована нормативно-правовая база, основы регулирования в области решения оптимизационных задач. Показано, что в рамках функционирования отечественной модели АО «Системный оператор Единой энергосистемы России» проводит выбор состава включенного генерирующего оборудования в рамках поданных ценовых заявок с учетом потребности рынка и баланса энергосистемы. Рассмотренная и проанализированная действующая система выбора состава включенного генерирующего оборудования, принятая в российской электроэнергетике, не позволяет в полной мере учитывать системную надежность, что способствует дальнейшему изучению данного вопроса. Проведенный сравнительный анализ принципов функционирования моделей и особенностей решения оптимизационных задач по выбору состава включенного генерирующего оборудования показал сильные и слабые стороны в подходах в различных странах как с точки зрения законодательства, так и с модельной стороны. По итогам проведенных аналитических исследований сформулированы основные положения по каждой модели, посредством которых решается оптимизационная задача выбора состава включенного генерирующего оборудования.
Целью работы является изучение влияния домашних зарядных станций электромобилей на отклонение напряжения в пригородной распределительной сети 0,4 кВ. В качестве объекта исследования выбрана трансформаторная подстанция 10/0,4 кВ и распределительная сеть 0,4 кВ, обеспечивающая электроснабжение 114 частных жилых домов. Для оценки влияния домашних зарядных станций на отклонение напряжения была разработана стохастическая квазидинамическая модель электрической сети на языке программирования Python с использованием библиотеки pandapower. Данная модель позволяет моделировать суточные профили электропотребления и напряжения при различном количестве и точках подключения домашних зарядных станций с учетом случайного характера поведения владельцев электромобилей. Для поддержания уровня напряжения в допустимых пределах в работе рассмотрены использование инверторов бортовых зарядных устройств электромобилей в качестве источников реактивной мощности и смещение времени начала заряда электромобилей на ночные часы. По результатам моделирования показано, что при наличии домашней зарядной станции у 30% потребителей пригородной распределительной сети 0,4 кВ загрузка головного участка питающей линии может кратковременно приближаться к 100%, а глубина отрицательных отклонений напряжения превышать 20%. Установлено, что вольт-вар (Volt-Var) регулирование напряжения бортовыми зарядными устройствами электромобилей позволяет значительно сократить отклонения напряжения в распределительной сети (снижение продолжительности отклонений напряжения ниже -5%: с 27,3% до 12,9%) при несущественном влиянии на продолжительность заряда электромобилей. Полученные в настоящем исследовании результаты могут быть использованы при перспективном планировании развития распределительных электрических сетей в условиях широкого распространения электромобилей.
Цель исследований заключалась в решении проблемы повышения точности расчета потокораспределения в распределительной сети среднего напряжения на основе измерений балансовых интеллектуальных счетчиков, размещенных на вторичной стороне трансформаторов 6(10)/0,4 кВ. Для учета влияния несбалансированности нагрузок в сети низкого напряжения на потокораспределение в сети среднего напряжения использовалось приведение трехфазных трехпроводных линий к однолинейному представлению, которое позволяет применять для расчета несимметричного режима программы расчета симметричных режимов. Определение нагрузок сети среднего напряжения осуществлялось добавлением к нагрузкам, измеренным на вторичной стороне трансформаторов, потерь мощности в обмотках и в сердечнике трансформатора. Расчет потерь мощности в обмотках с использованием методов фазных координат и симметричных составляющих включает определение токов в обмотках каждой фазы по 48 срезам измерений мощностей нагрузок и модулей напряжений, выполненных балансовым счетчиком в течение суток. Показано, что корректность выражений для расчета потерь мощности в обмотках трансформаторов подтверждается равенством суммарных потерь в фазных координатах и симметричных составляющих. Установлено, что потери мощности обратной последовательности в обмотках трансформаторов близки к нулю, а потери нулевой последовательности существенно меньше потерь прямой последовательности практически для всех трансформаторов со схемой соединения обмоток звезда/звезда с нулем, независимо от коэффициента загрузки и номинальной мощности. Таким образом, в результате проведенных исследований были доказаны возможность и эффективность использования измерений балансовых счетчиков для определения нагрузок и расчета потокораспределения сети среднего напряжения, что проиллюстрировано для реальной распределительной сети, включающей 26 трансформаторов. Проведенные исследования показали необходимость уточнения математических моделей трансформаторов при совместном расчете распределительных сетей среднего и низкого напряжени
Основная цель данного исследования заключалась в разработке технологического подхода организации автоматизированного контроля процесса производства изделий из фотополимеров. Для идентификации начала и окончания технологического процесса полной полимеризации изучаемых изделий был предложен и применялся термометрический анализ с использованием разработанного авторами автоматизированного лабораторного стенда на базе промышленной установки аддитивной полимеризации AZ3000. Для разработки алгоритма работы был использован принцип экстремального управления. Изготовление образцов размерами 25х25х3 мм производилось с применением широко используемого материла фотополимерной композиции марки ROEHM R-50. Авторами были научно обоснованы контролируемые параметры процесса фотополимеризации, а именно: температура в активной зоне и на поверхности изделия. Разработанный авторами алгоритм, реализованный в виде программного комплекса, написанного для процессора AtMega 328 на языке программирования С++ в среде AVR Studio, позволил уверенно контролировать начало и окончание процесса полной полимеризации изделия. Были изучены прочностные характеристики образцов из фотополимерных материалов. Установлено, что твердость образцов из фотополимерных материалов увеличилась с 109,12 до 117,5HL. Это позволило доказать функционирование разработанного алгоритма системы управления процессом фотополимеризации. Апробация разработанного технологического подхода и алгоритма автоматизированного контроля процесса производства изделий из фотополимеров с использованием аддитивных технологий позволяет сделать вывод о расширении возможностей получения деталей с определенными заранее прочностными характеристиками. Использование таких деталей открывает новый потенциал выбора фотополимерных материалов для изготовления изделий в различных отраслях машиностроения, включая транспорт и авиацию.
Цель – анализ и выбор новых материалов на этапе конструкторской подготовки производства изделий из композитов для замены общепринятых конструкционных металлов. В работе использовалась методика многокритериального анализа мультивариантных систем, основанная на матричном анализе. В качестве параметров сравнения, используемых в методике, могут выступать общеизвестные справочные данные, рекомендации по результатам научных исследований материалов, технико-экономические и качественные параметры методов формообразования изделий из этих материалов с учетом их специфических свойств. Проведен сравнительный анализ восьми разных материалов для конструирования изделий из полимерных композитов, ориентированный на замену общепринятых конструкционных материалов, при трех условиях сопоставимости. Первое условие – учет всех выбранных для сравнения физико-механических свойств материалов и их стоимости. При втором условии сопоставимости акцент сделан на пределы прочности материала, модуль упругости и стоимость. При третьем условии сопоставимости условия частично схожи со вторым условием, за исключением предела прочности на сжатие. Установлено, что наиболее рациональным композитом для конструирования изделий при первом и втором условии сопоставимости является базальтопластик, у которого наибольшее значение весового критериального коэффициента (q) в первом случае равно 0,3947, а во втором – 0,3955. При третьем условии сопоставимости оптимальным вариантом композиционного материала стал также углепластик, у которого достигнуто наибольшее значение q = 0,3341. Предложенная методика позволяет производить анализ и выбор не только материала для изготовления изделий, но и инструментального материала, режимов резания и геометрии инструмента с учетом накопленной в результате эмпирических исследований базы знаний. Произведена апробация разработанной методики при трех условиях сопоставимости. В результате проведенных теоретических исследований установлено, что применение разработанной методики может повысить эффективность подготовки производства
Цель – исследование напряженно-деформированного состояния поверхностного слоя детали из алюминиевого сплава ВТ95 при дробеударной обработке и последовательности операций «дробеударная обработка – зачистка лепестковым кругом». Объектами исследования являются крупногабаритные детали типа панелей и обшивок сложной формы, применяемые в самолето-, ракето- и судостроении. При разработке методики определения остаточных напряжений использовалось компьютерное моделирование в программном комплексе Ansys Workbench 19.0. В результате моделирования изучаемых процессов обработки получено наглядное представление характера формирования остаточных напряжений, физические значения и графики распределения последних. Установлено, что характер распределения остаточных напряжений после выполнения двух видов обработки схож. Максимальное значение остаточных напряжений, полученных в результате выполнения дробеударной обработки поверхности детали дробью диаметром 3,0 мм при скорости удара дроби 25 м/с, достигает порядка 600 МПа при глубине залегания 1,0 мм. После дробеударной обработки выполняется зачистка лепестковым кругом, в конечно-элементном моделировании, представленном в виде набора абразивных зерен со скоростью 18,316 м/с. Показано, что удаление в процессе зачистки с поверхности пластины слоя 25, 50 и 75 мкм способствует срезанию верхней части эпюры остаточных напряжений и, как следствие, к уменьшению значений остаточных напряжений в технологической последовательности «дробеударная обработка – зачистка» до 400 МПа. Также установлено, что по мере увеличения толщины снятого с поверхности детали слоя при зачистке величина остаточных напряжений сокращается медленнее. При этом независимо от толщины снимаемого слоя при зачистке, глубина залегания сжимающих остаточных напряжений практически не изменена (около 0,7 мм). Разработанная конечно-элементная модель позволяет прогнозировать и контролировать уровень и величину остаточных напряжений в образце из алюминиевого сплава еще на стадии технологической подготовки для операций «дробеударная
Издательство
- Издательство
- ИРНИТУ
- Регион
- Россия, Иркутск
- Почтовый адрес
- 664074, Иркутская обл, г Иркутск, Свердловский р-н, ул Лермонтова, д 83
- Юр. адрес
- 664074, Иркутская обл, г Иркутск, Свердловский р-н, ул Лермонтова, д 83
- ФИО
- Корняков Михаил Викторович (Ректор)
- E-mail адрес
- cpk@istu.edu
- Контактный телефон
- +7 (395) 2405405