В общих неортогональных координатах сформулированы нелинейные уравнения деформирования гибких пластин с учетом несовместных локальных деформаций. Использовались следующие предположения. 1. Перемещения пластины из отсчетной (самонапряженной) формы ограничены кинематическими гипотезами Кирхгофа - Лява. 2. Элементарные объемы, составляющие отсчетную форму, могут быть локально трансформированы в ненапряженное состояние посредством невырожденного линейного преобразования (гипотеза о локальной разгрузке). 3. Преобразования, обратные локальной разгрузке, - импланты - могут быть найдены из решения эволюционной задачи, моделирующей последовательное нанесение бесконечно тонких слоев на лицевую граничную поверхность пластины. Построены геометрические пространства аффинной связности, моделирующие глобальную отсчетную форму, свободную от напряжений. В качестве частных случаев рассмотрены: пространство Вайценбока (с ненулевым кручением), пространство Римана (с ненулевой кривизной) и пространство Вейля (с ненулевой неметричностью)
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.