Архив статей журнала
В работе представлен способ применения статистической математической модели в процессе генерации базы данных для обучения искусственной нейронной сети. Исследование проводилось на примере прогнозирования физико-химических свойств модели многокомпонентной смеси дизельного топлива и водородсодержащего газа. В результате получена нейронная сеть, которая определяет искомые величины с ошибкой 0,2%. Это позволит использовать нейронную сеть в динамических системах оценки загрязнений технологических аппаратов со стороны исследуемой углеводородной смеси без использования сторонних программных продуктов.