ISSN 1818-1015 · EISSN 2313-5417
Язык: ru

МОДЕЛИРОВАНИЕ И АНАЛИЗ ИНФОРМАЦИОННЫХ СИСТЕМ

Архив статей журнала

ОПТИМИЗИРОВАННЫЙ АЛГОРИТМ ПОИСКА КРАТЧАЙШЕГО ПУТИ В КРАТНОМ ГРАФЕ (2023)
Выпуск: Т. 30 № 1 (2023)
Авторы: Смирнов Александр Валерьевич

В статье рассматриваются неориентированные кратные графы произвольной натуральной кратности k > 1. Кратный граф содержит ребра трех типов: обычные, кратные и мультиребра. Ребра последних двух типов представляют собой объединение k связанных ребер, которые соединяют 2 или (k + 1) вершину соответственно. Связанные ребра могут использоваться только согласованно. Если вершина инцидентна кратному ребру, то она может быть инцидентна другим кратным ребрам, а также она может быть общим концом k связанных ребер мультиребра. Если вершина является общим концом мультиребра, то она не может быть общим концом никакого другого мультиребра.Как и для обычного графа, для кратного графа можно ввести целочисленную функцию длины ребра и поставить задачу о кратчайшем пути между двумя вершинами. Кратный путь является объединением k обычных путей, согласованных на связанных ребрах кратных и мультиребер. В статье оптимизирован полученный ранее алгоритм поиска кратчайшего пути в произвольном кратном графе. Показано, что оптимизированный алгоритм полиномиален. Таким образом, задача о кратчайшем пути является полиномиальной для любого кратного графа.

Сохранить в закладках