Рассматривается важное в математической экологии логистическое уравнение с запаздыванием и диффузией. Предполагается, что граничные условия на одном из концов отрезка [0,1] содержат параметр. Исследован вопрос о локальной — в окрестности состояния равновесия — динамике соответствующей краевой задачи при всех значениях параметров граничных условий. Выделены критические случаи в задаче об устойчивости состояния равновесия и построены нормальные формы — скалярные комплексные обыкновенные дифференциальные уравнения первого порядка. Их нелокальная динамика определят поведение решений исходной задачи в малой окрестности состояния равновесия.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.