Архив статей журнала

АЛГОРИТМ КЛАССИФИКАЦИИ ПОЖАРООПАСНЫХ СИТУАЦИЙ НА ОСНОВЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ (2024)
Выпуск: № 3 (2024)
Авторы: Сингх Санни, Прибыльский Алексей Васильевич

Современные технологические требования и развивающаяся городская инфраструктура ставят задачу разработки методов распознавания и классификации пожароопасных ситуаций. Быстрое и эффективное распознавание начальных признаков возгорания становится жизненно важным аспектом обеспечения безопасности людей, а также материальных ценностей. В связи с этим разрабатываются, реализуются, тестируются и внедряются системы, способные автоматически распознавать и классифицировать пожароопасные ситуации. Классификации пожароопасных ситуаций позволяет определить степень опасности обнаруженных отклонений, что способствуют к принятию более эффективных решений по предотвращению последствий пожаров и их признаков таких как, однократное кратковременное повышение температуры и уровня задымленности которое может указывать на выход из строя электрических компонентов, расположенных возле датчиков. Алгоритм классификации пожароопасных ситуаций разработан для комплекса взаимосвязанных датчиков, который в свою очередь, за счет своей структуры, позволяет обнаруживать даже малейший признака пожара. В рамках данного исследования приводится алгоритм классификации пожароопасных ситуаций на основе нейросетевых технологий. Приведено описание существующих классов пожароопасных ситуаций, а также критерии, по которым размечались данные по указанным классам. Проведено моделирование алгоритма на обучающей и тестовой выборках с приведением используемых параметров точности, формулой их расчетов, результатами классификации пожароопасных ситуаций. Проведено исследование влияния шага отсчета в выборке базы данных на параметры точности и время обучения нейронной сети. Разработанный алгоритм реализован на языке программирования Python в IDE PyCharm. Датасет для обучения и тестирования получены из реальных источников, содержащих информацию об обнаруженных пожароопасных ситуациях в метрополитенах, в которых установлен комплекс взаимосвязанных датчиков. Результаты моделирования алгоритма показали, что предложенный алгоритм обладает высокой точностью для предиктивной классификации пожароопасных ситуаций на реальных объектах.

Сохранить в закладках
КОМПЛЕКСИРОВАНИЕ МОДЕЛЕЙ СЕГМЕНТАЦИИ, СОПРОВОЖДЕНИЯ И КЛАССИФИКАЦИИ ДЛЯ РЕШЕНИЯ ЗАДАЧ ВИДЕОАНАЛИТИКИ (2024)
Выпуск: № 1 (2024)
Авторы: Архипов Андрей Евгеньевич, Фомин Иван Сергеевич, Матвеев Виктор Дмитриевич

Комплексирование нескольких моделей в одну систему технического зрения позволит решать более сложные и комплексные задачи. В частности, для мобильной робототехники и беспилотных летательных аппаратов (БЛА) является актуальной проблемой отсутствие наборов данных для различных условий. В работе в качестве решения данной проблемы предлагается комплексирование нескольких моделей: сегментации, сопровождения и классификации. Это позволит значительно повысить качество решения сложных задач без дополнительного обучения. Модель сегментации позволяет выделять произвольные объекты из кадров, поэтому ее можно использовать в недетерминированных и динамических средах. Модель классификации позволяет определить необходимые для навигации объекты, которые затем сопровождаются с помощью третей модели. В работе подробно описан алгоритм комплексирования моделей. Ключевым элементом в алгоритме является коррекция предсказаний моделей, позволяющая достаточно надежно сегментировать и сопровождать различные объекты. Процедура коррекции предсказаний моделей решает следующие задачи: добавление новых объектов для сопровождения, валидация сегментированных масок объектов и уточнение сопровождаемых масок. Универсальность данного решения подтверждается работой в сложных условиях, на которых не обучали модели, например, подводная съемка или изображения с БЛА. Проведено экспериментальное исследование каждой из моделей в условиях открытой местности и в помещении. Наборы данных включали сцены актуальные для мобильной робототехники. В частности, в сценах присутствовали движущиеся объекты (человек, автомобиль) и возможные преграды на пути робота. Для большинства классов метрики качества сегментации превышали 80%. Основные ошибки связаны с размерами объектов. Проведенные эксперименты наглядно демонстрируют универсальность данного решения без дополнительного обучения моделей. Дополнительно проведено исследование быстродействия на персональном компьютере с различными входными параметрами и разрешением. Увеличение количества моделей значительно повышает вычислительную нагрузку и не достигает реального времени. Поэтому одним из направления дальнейших исследований является повышение быстродействия системы.

Сохранить в закладках