ИЗВЕСТИЯ ЮФУ. ТЕХНИЧЕСКИЕ НАУКИ
Архив статей журнала
Комплексирование нескольких моделей в одну систему технического зрения позволит решать более сложные и комплексные задачи. В частности, для мобильной робототехники и беспилотных летательных аппаратов (БЛА) является актуальной проблемой отсутствие наборов данных для различных условий. В работе в качестве решения данной проблемы предлагается комплексирование нескольких моделей: сегментации, сопровождения и классификации. Это позволит значительно повысить качество решения сложных задач без дополнительного обучения. Модель сегментации позволяет выделять произвольные объекты из кадров, поэтому ее можно использовать в недетерминированных и динамических средах. Модель классификации позволяет определить необходимые для навигации объекты, которые затем сопровождаются с помощью третей модели. В работе подробно описан алгоритм комплексирования моделей. Ключевым элементом в алгоритме является коррекция предсказаний моделей, позволяющая достаточно надежно сегментировать и сопровождать различные объекты. Процедура коррекции предсказаний моделей решает следующие задачи: добавление новых объектов для сопровождения, валидация сегментированных масок объектов и уточнение сопровождаемых масок. Универсальность данного решения подтверждается работой в сложных условиях, на которых не обучали модели, например, подводная съемка или изображения с БЛА. Проведено экспериментальное исследование каждой из моделей в условиях открытой местности и в помещении. Наборы данных включали сцены актуальные для мобильной робототехники. В частности, в сценах присутствовали движущиеся объекты (человек, автомобиль) и возможные преграды на пути робота. Для большинства классов метрики качества сегментации превышали 80%. Основные ошибки связаны с размерами объектов. Проведенные эксперименты наглядно демонстрируют универсальность данного решения без дополнительного обучения моделей. Дополнительно проведено исследование быстродействия на персональном компьютере с различными входными параметрами и разрешением. Увеличение количества моделей значительно повышает вычислительную нагрузку и не достигает реального времени. Поэтому одним из направления дальнейших исследований является повышение быстродействия системы.