ВЕСТНИК АСТРАХАНСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА. СЕРИЯ: УПРАВЛЕНИЕ, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА
Архив статей журнала
Для определения зависимостей между входными переменными, технологическим режимом и выходными переменными процесса полимеризации этилена в автоклавном реакторе с мешалкой, а также анализа влияния конструктивных параметров реактора на эффективность требуется построение математической модели реактора полимеризации. Для решения этих задач предложена детерминированная математическая модель, полученная на основе анализа физико-химических закономерностей процесса полимеризации этилена. Приведены принципиальная схема полимеризации этилена с указанием потоков веществ и энергии, описание процесса, механизм химической кинетики полимеризации этилена, система допущений, упрощающих построение математической модели, уравнения математической модели реактора полимеризации этилена в автоклавном реакторе с мешалкой. Автоклавный реактор полимеризации этилена представлен как каскад аппаратов идеального смешения для описания каждой из зон реактора. Скорости химических реакций инициирования, роста и обрыва цепи выражены в соответствии с законом действующих масс. Математическая модель в окончательном виде представляет собой системы обыкновенных дифференциальных уравнений для описания каждой из зон реактора. Приведены исходные числовые значения переменных и параметров для моделирования процесса полимеризации этилена в автоклавном реакторе. Показаны результаты численных экспериментов, а также исследовано влияние различных факторов на выходные переменные процесса полимеризации этилена. Предложенная математическая модель может быть использована для оптимизации технологического режима процесса полимеризации этилена в автоклавном реакторе с мешалкой, а также для анализа влияния конструктивных параметров реактора на эффективность его работы.
Рассматривается задача автоматизации теплового расчета реактора для синтеза серосодержащего сорбента, полученного на основе использования отходов производства эпихлоргидрина, хлорированного лигнина и полисульфидов натрия. Автоматизированный расчет способствует сокращению трудоемкости процесса, повышению качества принимаемых проектных решений, существенно снижает производственные затраты и себестоимость готовой продукции. Установлено, что из-за несовместимости критериев подобия химических и массообменных процессов масштабный переход в реакторе на основе физического подобия осуществить практически невозможно. При масштабном переходе от лабораторной установки к малой производственной установке были использованы расчетные методы, основанные на инженерном опыте и позволяющие увеличить достоверность полученных результатов. Определены начальные значения, на основании которых будут осуществляться расчеты реактора с пропеллерной мешалкой, которая используется для перемешивания рабочей смеси с коэффициентом динамической вязкости 6,01 сП и содержанием твердой фазы 31,8 %. Тип мешалки был определен исходя из результатов расчета физических свойств ингредиентов, обзора конструкций перемешивающих устройств. Приводятся блок-схема и формальное описание алгоритма расчета теплообмена при разогреве реакционной смеси; интерфейс программы, написанной на языке C#, отображающий результаты теплового расчета нагрева рабочей смеси. В результате расчета вычислены количество теплоты и время, необходимые для нагрева рабочей смеси, коэффициент теплоотдачи от рабочей среды к стенке реактора, массовый расход воды и ее затраты, скорости воды в тепловой рубашке, режим течения воды в рубашке и другие критерии подобия.