МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
Архив статей журнала
Проведено аналитическое исследование проблемы предупреждения аварийных ситуаций и предиктивной диагностики оборудования при добыче углеводородов на нефтегазовых месторождениях, а также способов решения данной проблемы путем использования искусственного интеллекта, основанного на глубоких нейронных сетях. Одним из ключевых факторов, сдерживающих развитие систем предиктивной диагностики оборудования, является недостаток данных, описывающих предаварийные ситуации, которые необходимы для качественного обучения нейросетевых моделей. Приводится обзор публикаций и исследований последних лет по тематике анализа телеметрических данных и распознавания аварийных ситуаций. Рассматриваются нейросетевые модели, которые могут быть использованы для прогнозирования выхода из строя насосно-компрессорного оборудования и других агрегатов. Изучены случаи применения нейросетевых моделей, специально обученных для решения данной задачи, а также нейросетевые модели, используемые в иных задачах, но анализирующие схожие структуры данных. Поднимается вопрос переноса обучения, чтобы адаптировать нейросетевые модели, изначально разработанные и обученные для других областей, к использованию в рассматриваемой области, в целях уменьшения объема выборки при обучении промышленного искусственного интеллекта. Проведено сравнение достигнутых результатов, обозначены преимущества и недостатки существующих технических решений.