Архив статей журнала

ФОРМАЛЬНАЯ МОДЕЛЬ МНОГОАГЕНТНЫХ СИСТЕМ ДЛЯ ФЕДЕРАТИВНОГО ОБУЧЕНИЯ (2022)
Выпуск: T. 35 № 1 (2022)
Авторы: Холод Иван Иванович, Юлейси Г. П.

В статье представлена формальная модель многоагентных систем для федеративного обучения. Концепция федеративного обучения очень близка к многоагентным системам, поскольку агенты позволяют обучать модели машинного обучения на локальных устройствах, сохраняя при этом конфиденциальную информацию. Возможности агентов взаимодействовать друг с другом позволяют обобщать (агрегировать) такие модели и повторно их использовать. В работе описываются взаимодействие и координация агентов, которые должны осуществляться с учетом стратегий обучения: последовательно, когда модель обучается по очереди на каждом узле; централизованно, когда модели обучаются параллельно на каждом узле и агрегируются на центральном сервере; децентрализованно, когда обучение и агрегация выполняются на каждом из узлов. Выделены основные типы агентов, необходимые для выполнения полного цикла федеративного обучения: принимающий задачу от пользователя, собирающий информацию о среде, выполняющий планирование обучения, выполняющий обучение на узле с данными, предоставляющий информацию и доступ к данным, осуществляющий агрегацию моделей. Для каждого из агентов определены основные действия и типы сообщений, которыми они обмениваются. Проанализированы и описаны конфигурации размещения агентов для каждой из стратегий федеративного обучения. На основе предложенной формальной модели можно осуществлять разработку многоагентных систем, используемых для задач федеративного обучения, а на основе выделенных типов агентов и видов сообщений - платформы агентов, сами агенты и протоколы их взаимодействия.

Сохранить в закладках
АРХИТЕКТУРА ПРОГРАММНОЙ ПЛАТФОРМЫ РАЗРАБОТКИ И ТЕСТИРОВАНИЯ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ ДЛЯ СОЗДАНИЯ СПЕЦИАЛИЗИРОВАННЫХ СЛОВАРЕЙ (2022)
Выпуск: T. 35 № 1 (2022)
Авторы: Сидоркина Ирина Геннадьевна, Пуртов Д. Н.

Предложена реализация программной платформы для создания нейросетевых моделей с их тестированием, используемых для формирования специализированных словарей автоматизированных систем. Она позволяет ускорить процесс поиска оптимального метода для разработки нейросетевой модели. В основе платформы лежит обзор существующих инструментов и методов, используемых для создания моделей анализа текстов и технологий виртуализации ПО. Авторами исследования разработана архитектура программной платформы для формирования специализированных словарей, обеспечивающая одновременное создание разных нейросетевых моделей в виртуальных контейнерах. Контейнерная виртуализация программных элементов, создающих и тестирующих нейросетевые модели, обеспечивает проведение всех математических расчетов по обработке текстовой информации, обучению и тестированию нейросетевой модели децентрализованно, параллельно и изолированно друг от друга. Обмен данными между виртуальными контейнерами, а также хранение результатов их работы осуществляются через специальную шину данных, представляющую собой дисковое пространство, к которому имеют доступ все контейнеры. Применение разработанной платформы позволит ускорить процесс поиска алгоритма создания специализированных словарей через проверку гипотез, основанных на использовании различных методов построения моделей. Ускорение процесса происходит благодаря параллельности и повторному использованию математических результатов общих этапов алгоритмов, математические расчеты которых проведены похожим алгоритмом. Это позволяет масштабировать и дробить процесс обучения за счет параллельного создания различных моделей, а также на уровне отдельных этапов создания моделей. Предложенная платформа была успешно применена для поиска локально-оптимального метода создания модели в текстах узкой тематики.

Сохранить в закладках
МОДЕЛИРОВАНИЕ БЫСТРОГО АЛГОРИТМА КВАНТОВОГО ПОИСКА НА КЛАССИЧЕСКИХ КОМПЬЮТЕРАХ: ИНФОРМАЦИОННЫЙ АНАЛИЗ ПРОБЛЕМЫ ОСТАНОВА (2023)
Выпуск: T. 36 № 3 (2023)
Авторы: Ульянов Сергей Викторович, Ульянов Виктор Сергеевич

Описана методика модификации моделирования квантового алгоритма, основанная на прямом (большого объема) матричном представлении квантовых операторов. Этот подход стабилен и точен, но требует размещения матриц оператора в памяти компьютера. Поскольку размер операторов растет экспоненциально, подход полезен для моделирования квантовых алгоритмов с относительно небольшим количеством кубитов (например, приблизительно 11 кубитов на типовом компьютере). Используя его, относительно просто смоделировать работу системы контроля качества решения и выполнить анализ достоверности. Более эффективный метод быстрого моделирования контроля качества основан на вычислении всех или части операторных матриц по мере необходимости на текущей вычислительной основе. Используя данный метод, можно избежать сохранения всех или части операторных матриц. В этом случае количество кубитов, которые могут быть смоделированы (например, количество входных кубитов или количество кубитов в регистре состояния системы), влияет на экспоненциальный рост числа операций, необходимых для вычисления результата матричных произведений, и на размер вектора состояния, выделяемого в памяти компьютера. В одном из вариантов применения этого подхода целесообразно моделировать до 19 или более кубитов на типичном настольном компьютере и даже больше на системе с векторной архитектурой. Из-за особенностей процессов адресации памяти и доступа к ней в типичном настольном компьютере (например, персональный компьютер на базе Pentium), когда количество кубитов относительно невелико, подход «вычисления по требованию», как правило, эффективнее, чем подход с прямым хранением. Подход «вычисления по требованию» выигрывает благодаря применению результатов детального изучения квантовых операторов и их структуры, что позволяет более эффективно вычислять матричные элементы. В работе рассмотрено эффективное моделирование алгоритма квантового поиска Гровера на примере компьютера с классической архитектурой.

Сохранить в закладках
РАЗРАБОТКА АЛГОРИТМА ПРИМЕНЕНИЯ РАСПРЕДЕЛЕННЫХ ВЫЧИСЛИТЕЛЬНЫХ РЕСУРСОВ НА ОСНОВЕ ПРИНЦИПОВ EDGE-ВЫЧИСЛЕНИЙ (2023)
Выпуск: Т. 36 № 1 (2023)
Авторы: Воробьев А. М., Воробьева Марина Сергеевна, Боганюк Ю. В.

В статье рассматриваются вопросы реализации алгоритма распределения вычислительных задач по множеству распределенных вычислительных ресурсов с последующей агрегацией результатов. Данный алгоритм является ключевым в рамках проекта реализации центра обработки данных на принципах экономики совместного потребления. Прототип механизма реализован на языке Python 3.8 с применением СУБД PostgreSQL 14, система передачи сообщений - на базе RabbitMQ 3.9. В качестве платформы вычислительных узлов выступает ОС CentOS 8 Stream. Цель работы заключается в реализации масштабируемого механизма выполнения распределенных вычислений для применения в качестве основного средства распределения задач и агрегации результатов в рамках исследуемого облика центра обработки данных на принципах экономики общественного потребления. Предметом исследования являются методы резервирования и применения вычислительных мощностей, а также агрегации результатов работы программных алгоритмов. Предложенный механизм решает задачу распределения вычислений с последующей агрегацией результатов среди вычислительных узлов с различными техническими характеристиками. Реализуется интерфейс, пригодный для интеграции в клиентские информационные системы как средство выгрузки вычислений с доступом в формате REST API-шлюза. Теоретическая значимость работы заключается в комбинировании существующих принципов и идей Edge-вычислений для решения иного класса задач, где проблемой является недостаток вычислительного ресурса для задач информационной системы, а не характеристик имеющейся модели. Практическая значимость состоит в разработке прикладного инструмента применения внешних вычислительных мощностей для решения широкого класса клиентских задач. Это открывает возможность организации коммерческого взаимодействия владельцев неиспользуемых вычислительных ресурсов и владельцев информационных систем, испытывающих недостаток вычислительных мощностей.

Сохранить в закладках
ПРОМЫШЛЕННАЯ РОБОТИЗИРОВАННАЯ ИНТЕЛЛЕКТУАЛЬНАЯ РОБАСТНАЯ СИСТЕМА УПРАВЛЕНИЯ: ПРИМЕНЕНИЕ ТЕХНОЛОГИЙ КВАНТОВЫХ МЯГКИХ ВЫЧИСЛЕНИЙ И КВАНТОВОЙ ПРОГРАММНОЙ ИНЖЕНЕРИИ В НЕОПРЕДЕЛЕННЫХ УСЛОВИЯХ УПРАВЛЕНИЯ (2023)
Выпуск: Т. 36 № 1 (2023)
Авторы: Ульянов Сергей Викторович, Решетников Андрей Геннадьевич, Зрелова Д. П.

В работе описана стратегия проектирования интеллектуальных систем управления на основе технологий квантовых и мягких вычислений. Представлен синергетический эффект квантовой самоорганизации робастной базы знаний, извлеченной из несовершенных баз знаний интеллектуального нечеткого регулятора. Разработанная технология повышает надежность интеллектуальных когнитивных систем управления в непредвиденных ситуациях управления, например, с различными типами взаимодействующих роботов. Наглядные примеры продемонстрировали эффективное внедрение схемы квантового нечеткого логического вывода в качестве готового программируемого алгоритмического решения для систем управления нижнего исполнительного уровня, встроенных в стандартную плату, а также квантовое превосходство квантового интеллектуального управления классическими объектами управления, расширяя тезис Фейнмана-Манина. Обсуждается корректная физическая интерпретация процесса управления самоорганизацией на квантовом уровне на основе квантовых информационно-термодинамических моделей обмена и извлечения квантовой (скрытой) ценной информации из/между классическими траекториями частиц в модели «рой взаимодействующих частиц». Продемонстрирован новый информационный синергетический эффект: из двух ненадежных баз знаний нечеткого регулятора в режиме реального времени создается робастная база знаний квантового нечеткого регулятора. Этот эффект имеет чисто квантовую природу и использует скрытую квантовую информацию, извлеченную из классических состояний. Обсуждаются основные физические и информационно-термодинамические аспекты модели квантового интеллектуального управления классическими объектами управления.

Сохранить в закладках
КОГНИТИВНЫЕ РЕГУЛЯТОРЫ: ТЕХНОЛОГИИ МЯГКИХ ВЫЧИСЛЕНИЙ И ИНФОРМАЦИОННО-ТЕРМОДИНАМИЧЕСКИЙ ЗАКОН САМООРГАНИЗАЦИИ ИНТЕЛЛЕКТУАЛЬНОГО УПРАВЛЕНИЯ (2023)
Выпуск: Т. 36 № 1 (2023)
Авторы: Ульянов Сергей Викторович, Шевченко А. А., Шевченко А. В., Зрелова Д. П.

В работе рассматривается методология проектирования интеллектуальных когнитивных систем управления сложными динамическими системами. Кратко описаны информационные и термодинамические подходы, объединяющие однородным условием критерии динамической устойчивости, управляемости и робастности. Обозначены проблемы обучения и адаптации нечеткого регулятора, которые являются актуальными в современной теории управления. Многие существующие решения используют модели искусственных нейронных сетей, основанные на алгоритме обратного распространения ошибки, многослойной структуре Кохонена и т.д. К сожалению, подобные алгоритмы не гарантируют требуемого уровня надежности и точности управления в сложных и непредвиденных ситуациях. Предложено одно из решений проблемы разработки системы когнитивного управления. Оно заключается в поиске конструктивного решения задач проектирования баз знаний и интеллектуального робастного когнитивного управления в заданном проблемно-ориентированном приложении. Сравниваются различные типы регуляторов, в том числе интеллектуальный регулятор на основе эмоционального обучения мозга. Описаны преимущества проектирования робастных баз знаний на основе программно-алгоритмического комплекса Оптимизатор баз знаний (SCOptKBTM) на мягких вычислениях. Рассматривается одна из ключевых задач современной робототехники - разработка технологий когнитивного взаимодействия, позволяющих выполнять интеллектуальные функции управления за счет перераспределения знаний и управления на программном уровне. На практическом примере показана эффективность предложенной гибридной когнитивной системы управления, повышающей точность и надежность распознавания ментальных команд.

Сохранить в закладках