Одним из направлений разработки практичных постквантовых криптографических алгоритмов с открытым ключом является использование конечных алгебр в качестве их алгебраического носителя. Рассматриваются два подхода в этом направлении: 1) построение алгоритмов электронной цифровой подписи со скрытой группой на некоммутативных ассоциативных алгебр и 2) построение алгоритмов многомерной криптографии с использованием операции экспоненцирования в векторном конечном поле (коммутативной алгебре, являющейся конечным полем) для задания нелинейного отображения с секретной лазейкой. Первый подход включает разработку криптосхем двух типов: основанных на вычислительной трудности а) скрытой задачи дискретного логарифмирования и б) решения большой системы квадратных уравнений. Для второго подхода возникают проблемы обеспечения полной рандомизации цифровой подписи и задания некоммутативных ассоциативных алгебр большой размерности. Обсуждаются способы решения данных проблем. Показана важность исследования строения конечных некоммутативных алгебр с точки зрения декомпозиции на множество коммутативных подалгебр. Другое направление использования конечных алгебр для разработки криптографических алгоритмов с открытым ключом связано с существенным (в 10 и более раз) уменьшением размера открытого ключа в алгоритмах многомерной криптографии. В нем возникает проблема разработки формализованных параметризуемых унифицированных способов задания векторных конечных полей больших размерностей (от 5 до 130) с достаточно большим числом потенциально реализуемых типов и модификаций (до 2500 и более), задаваемых различными наборами структурных констант, с помощью которых определяется операция умножения векторов. Предложены варианты указанных способов и топологий нелинейных отображений на векторных конечных полях различных размерностей. Показано, что использование отображений, задающих операцию экспоненцирования в векторных конечных полях, потенциально обеспечивает устранение основного недостатка известных алгоритмов многомерной криптографии, связанного с большим размером открытого ключа.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.