Архив статей журнала

АЛГОРИТМ ОПТИМИЗАЦИИ ИЗВЛЕЧЕНИЯ КЛЮЧЕВЫХ СЛОВ НА ОСНОВЕ ПРИМЕНЕНИЯ ЛИНГВИСТИЧЕСКОГО ПАРСЕРА (2024)
Выпуск: Т. 23 № 2 (2024)
Авторы: Кравченко Даниил Юрьевич, Кравченко Юрий Алексеевич, Мансур Али, Мохаммад Жуман, Павлов Николай Сергеевич

В данной статье представлено аналитическое исследование особенностей двух типов парсинга, а именно синтаксический анализ составляющих (constituency parsing) и синтаксический анализ зависимостей (dependency parsing). Также в рамках проведенного исследования разработан алгоритм оптимизации извлечения ключевых слов, отличающийся применением функции извлечения именных фраз, предоставляемой парсером, для фильтрации неподходящих фраз. Алгоритм реализован с помощью трех разных парсеров: SpaCy, AllenNLP и Stazna. Эффективность предложенного алгоритма сравнивалась с двумя популярными методами (Yake, Rake) на наборе данных с английскими текстами. Результаты экспериментов показали, что предложенный алгоритм с парсером SpaCy превосходит другие алгоритмы извлечения ключевых слов с точки зрения точности и скорости. Для парсера AllenNLP и Stanza алгоритм так же отличается точностью, но требует гораздо большего времени выполнения. Полученные результаты позволяют более детально оценить преимущества и недостатки изучаемых в работе парсеров, а также определить направления дальнейших исследований. Время работы парсера SpaCy значительно меньше, чем у двух других парсеров, потому что парсеры, которые используют переходы, применяют детерминированный или машинно-обучаемый набор действий для пошагового построения дерева зависимостей. Они обычно работают быстрее и требуют меньше памяти по сравнению с парсерами, основанными на графах, что делает их более эффективными для анализа больших объемов текста. С другой стороны, AllenNLP и Stanza используют модели парсинга на основе графов, которые опираются на миллионы признаков, что ограничивает их способность к обобщению и замедляет скорость анализа по сравнению с парсерами на основе переходов. Задача достижения баланса между точностью и скоростью лингвистического парсера является открытой темой, требующей дальнейших исследований в связи с важностью данной проблемы для повышения эффективности текстового анализа, особенно в приложениях, требующих точности при работе в реальном масштабе времени. С этой целью авторы планируют проведение дальнейших исследований возможных решений для достижения такого баланса.

Сохранить в закладках