Архив статей

Автоматизированная система диагностики аденокарциномы предстательной железы на базе искусственного интеллекта (2025)
Выпуск: № 6, Том 14 (2025)
Авторы: Швороб Данил Сергеевич, Хрюкин Евгений Александрович

Введение. Предстательная железа – одна из самых частых локализаций у мужчин среди всех онкологических заболеваний. Гистологическая классификация рака предстательной железы основана на шкале Глисона и часто ограничена субъективным решением и практическим опытом врача-патологоанатома. Программы, основанные на искусственном интеллекте, способны преодолеть данный недостаток и имеют потенциал исследования и использования в клинической практике. Цель исследования – разработать интеллектуальную автоматизированную систему на основе глубокого обучения с целью морфологической диагностики рака предстательной железы с дифференциацией по шкале Глисона.

Материалы и методы. Материалом исследования послужили биоптаты предстательной железы 200 пациентов с подозрением на рак. 882 готовых гистологических препарата оцифровывались на автоматическом сканере с последующим созданием полнослайдовых изображений. Полученные тяжеловесные фотографии формата TIFF конвертировались в приемлемый для работы в аннотаторе формат JPEG. Аннотирование проводилось с помощью веб-инструмента MakeSense. AI. По результатам работы последнего подготавливались наборы данных для обучения моделей первичной и вторичной классификации, а также сегментации.

Результаты. Мера производительности вторичного классификатора, определяющего, присутствуют ли на микрофотографии комплексы рака, без указания их локализации и конкретной степени дифференцировки, составила 0,965. Аналогичный показатель работы сегментатора, выделяющего контуры железистых структур и уточняющего степень их дифференцировки по шкале Глисона, составил в среднем 0,798.

Заключение. Качественная работа сегментатора требует большего объема данных и дальнейшего обучения нейросети, однако результаты подтверждают, что алгоритм искусственного интеллекта имеет высокий потенциал для улучшения качества морфологической диагностики.

Сохранить в закладках