В рамках теории перколяции предложено описание аномально высокой (до ~150) степени усиления нанокомпозитов полиуретан/графен. Для этой цели использованы модели случайной смеси резисторов (ССР или предел «муравья») и случайной сверхпроводящей сетки резисторов (ССС или предел «термита»). Показано, что первая модель применима к описанию нанокомпозитов ниже порога перколяции графена по схеме перекрытия его пластин, а вторая – выше порога перколяции. Достижение порога перколяции изменяет тип армирующего элемента структуры нанокомпозита от межфазных областей до собственно 2D-нанонаполнителя (графена). Указанный переход обусловлен изменением структуры 2D-нанонаполнителя в полимерной матрице от стохастической до выстроенной (планарной), что количественно можно описать с помощью размерности каркаса частиц (агрегатов частиц) 2D-нанонаполнителя. Реализация указанных выше аномально высоких значений степени усиления возможна только в модели ССС или пределе «термита» при достижении отрицательных величин критических перколяционных индексов. Кроме того, предел «термита» реализуется при условии, что проводимость плохого проводника в случайной смеси равна единице, а хорошего – бесконечности. На практике применительно к полимерным нанокомпозитам это условие означает небольшое, но конечное значение модуля упругости полимерной матрицы (для полиуретана он равен 10 МПа) и очень высокий модуль упругости 2D-нанонаполнителя (для графена это показатель составляет 106 МПа). Предложенная модель хорошо согласуется с экспериментальными результатами как качественно, так и количественно.
В работе описано влияние на свойства полиэтилена низкой плотности модифицирующих добавок углеродных 2D-структур, полученных карбонизацией природного полимера (лингнина) в условиях процесса самораспространяющегося высокотемпературного синтеза. Сочетанием методов рентгеноструктурного анализа и электронной микроскопии показано, что частицы карбонизированного продукта по свойствам отвечают многослойному графену с терминальными кислородсодержащими группами – графеноксидам. Полученные данные сопоставлены с данными влияния модифицирующих добавок графеноксидов, полученных в результате деструкции многостенных углеродных нанотрубок под влиянием гамма-излучения. Показано, что внедрение в полиэтилен графеноксидов, полученных по различным методикам, сопровождается единообразными изменениями в структуре, механических и теплофизических свойствах образцов.
В работе изучено влияние нанографеноксидов, полученных или из многостенных углеродных нанотрубок под воздействием гамма-радиации, или при карбонизации природного лигнина в процессе самораспространяющегося высокотемпературного синтеза, на структуру и свойства полиметилметакрилата. Показано, что внедрение нанографеноксидов в полиметилметакрилат приводит к изменениям структуры, механических и тепловых свойств образцов.