Основной проблемой любого подхода к машинному обучению является однофазность всего процесса. Исходное пространство признаков преобразуется таким образом, чтобы все данные соответствовали более-менее стандартным нормальным распределениям, после чего запускается модель, и в результате получаются выходные данные. Однако в настоящей статье рассматривается другая сторона вопроса. А что будет, если нелинейным способом преобразовать исходное пространство признаков и уже к новому пространству применить некоторый алгоритм? Представлено техническое объединение исправления геометрии пространства и последующее решение задачи формирования векторных образов для объектов панельных данных. В конце исследования приведено сравнение результатов как с ранее предложенными моделями, так и самого алгоритма с собой с учетом модификаций функций потерь. Результат показывает преимущество совместного обучения рассмотренных моделей упрощения пространства и моделей, используемых для решения некоей последующей задачи (например, построения векторных образов и кластеризации объектов). Основной упор сделан на аналитику панельных данных, однако идеология вполне поддается обобщению на любые направления, где присутствует множество дескриптивных векторов, характеризующих некоторый объект (для сохранения общности он не конкретизируется).
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.