Архив статей журнала

ПРИМЕНЕНИЕ НЕЙРОСЕТЕЙ ГЛУБОКОГО ОБУЧЕНИЯ ДЛЯ ДЕТЕКТИРОВАНИЯ ПРОСТРАНСТВЕННЫХ КЛЮЧЕВЫХ ТОЧЕК ПРИ ВЫПОЛНЕНИИ СПОРТИВНЫХ УПРАЖНЕНИЙ (2024)
Выпуск: № 2 (2024)
Авторы: Терехин Александр Дмитриевич, Федосеев Сергей Анатольевич, Столбов Валерий Юрьевич

Рассматривается применение нейронных сетей для детектирования пространственных ключевых точек человека при выполнении спортивных упражнений. Технология детекции ключевых точек позволяет отслеживать движения спортсменов в реальном времени, проводить глубокий анализ их техники и автоматизировать выполнение упражнений. Это помогает тренерам выявлять слабые места и совершенствовать навыки спортсменов. Основное внимание уделено методам 2D- и 3D-детекции ключевых точек, их применению в спорте и анализу эффективности. Приводятся результаты 3D-детекции ключевых точек для спортсмена выполняющего упражнение.

Сохранить в закладках
НЕЙРО-ОКРЕСТНОСТНЫЕ МОДЕЛИ КАК НОВЫЙ КЛАСС ИЕРАРХИЧЕСКИХ ДИНАМИЧЕСКИХ ОКРЕСТНОСТНЫХ МОДЕЛЕЙ (2024)
Выпуск: № 2 (2024)
Авторы: СЕДЫХ ИРИНА АЛЕКСАНДРОВНА, Истомин Владимир Александрович

Представлены основные особенности моделирования сложных распределенных процессов, отражена актуальность исследования и важность моделирования таких процессов. Рассматривается развитие окрестностного подхода, труды отечественных и зарубежных авторов, внесших значительный вклад в развитие математического моделирования сложных динамических систем. Приведены виды окрестностных моделей и отражено положение нового направления иерархических динамических нейро-окрестностных моделей в классе окрестностных моделей. Представлены преимущества развития данного подхода, а именно улучшение интерпретируемости модели при одновременном обеспечении достаточной точности с обобщающей способностью и устойчивостью к шуму. Выделены основные этапы построения и представлены сферы применения иерархических динамических нейро-окрестностных моделей. Отмечено три способа представления их структуры: графический, теоретико-множественный и матричный. Графический способ представления основывается на графах, разделенных на два слоя, которые описывают связи между узлами по переходам и по выходам соответственно. Показаны схемы слоев и общая схема узла исследуемой модели по переходам и выходам. Теоретико-множественный способ описывает модель в виде множеств узлов и иерархических окрестностных связей между ними. Матричный способ позволяет представить модель в виде матриц смежности для переходов и выходов по состояниям и по внешним воздействиям соответственно. Приведено подробное описание иерархических динамических нейро-окрестностных моделей и нейронных сетей в узлах. Описан алгоритм идентификации разработанного подхода, показана схема алгоритма идентификации. Приведен пример построения иерархической динамической нейро-окрестностной модели прогноза общего энергопотребления бытовой техники в доме с учетом отопления и погодных условий в реализованной программе Python с автоматическим подбором оптимальных параметров модели. Приведено описание исходных данных, взятых с сайта Kaggle. Проведена подготовка данных, на основе которых выполнено обучение и тестирование полученной модели. Показана схема иерархической динамической нейро-окрестностной модели прогнозируемого процесса. Сделаны выводы по проделанному исследованию.

Сохранить в закладках