ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ЛИНГВИСТИКА И МЕЖКУЛЬТУРНАЯ КОММУНИКАЦИЯ

Архив статей журнала

КОНТЕКСТУАЛЬНОЕ РАСПОЗНАВАНИЕ СЕМАНТИКИ МНОГОЗНАЧНЫХ СЛОВ СИСТЕМАМИ МАШИННОГО ПЕРЕВОДА (2025)
Выпуск: № 3 (2025)
Авторы: НОВИКОВ А. В.

В рамках этой статьи рассмотрены основные принципы, на которых строится работа систем машинного перевода, а также представлен сравнительный анализ перевода текстов разных стилей, чтобы проследить, как системы машинного перевода справляются с определением контекстуального значения слова, использованного в принципиально разных контекстах. Для проведения этого исследования выбраны четыре системы машинного перевода - Google Translate, Яндекс. Переводчик, DeepL и PROMT. В начале статьи перечислены основные подходы к машинному переводу, после чего представлено краткое описание принципов работы, выбранных нами систем машинного перевода. Далее приведены примеры употребления многозначных слов в разных контекстах, а также варианты их перевода на русский язык вышеупомянутыми системами машинного перевода, после чего проведен сравнительный анализ полученных переводов. В случае неправильно распознанных значений в программу-переводчик добавлялся расширенный контекст (абзац вместо предложения), так как предполагалось, что это может улучшить распознавание контекста, и как следствие, количество случаев корректного перевода значений выбранных нами слов. Гипотезой исследования было, что расширение контекста в случае нераспознанного значения должно помочь системе его распознать. Методом сплошной выборки мы отобрали сорок предложений, в которых двадцать одних и тех же слов использованы в разных контекстах и обладают разным значением. Выбирая примеры предложений для анализа, мы не придерживались конкретных тематик. Главным принципом для отбора слов послужило наличие у них многозначности. В заключении статьи представлен вывод и изложены основные аспекты настоящего исследования. Мы считаем, что описанный в этой работе эксперимент послужит хорошим подспорьем для дальнейших исследований в этой области, в частности для понимания того, каким образом осуществляется учет контекста и как возможно улучшить работу систем машинного перевода.

Сохранить в закладках