Архив статей журнала
Многоагентные системы относятся к технологиям искусственного интеллекта, а агент-ориентированный подход позиционируется как универсальное решение, которое способно конкурировать с другими технологиями в широком классе приложений. В данной статье рассматриваются традиционные и современные варианты формализации и интерпретации понятия агента в многоагентных системах, представлен обзор постановок задач, которые решаются при разработке таких систем для формирования признаков и свойств различных типов агентов.
Агент-ориентированные технологии позволяют выполнять сложные вычисления, решать многоуровневые задачи, осуществлять комплексное управление, имитировать реальные процессы, поэтому они имеют большое прикладное и практическое значение. Во второй части обзорного исследования рассматриваются различные подходы к моделированию многоагентных систем, современные направления их проектирования, приведены примеры инструментов разработки. Большое внимание уделено существующим приложениям многоагентных систем. Недостатком классического подхода к моделированию являются «жесткие» модели и заранее заданные протоколы коммуникации агентов, что не позволяет в полной мере реализовать такие свойства агентных систем, как самоорганизация, адаптация, способность к обучению и самообучению. Эволюционный подход базируется на организации вычислений на основе взаимодействий, при этом возникающие структуры требуют дополнительного анализа. Процесс разработки агентных приложений требует решения следующих основных задач: анализ предметной области и ее формализация; выбор модели многоагентной системы и формирование ее архитектуры; выбор модели агента, спецификация его свойств и поведения; формирование схем взаимодействия агентов, а также агентов и пользователей.