Архив статей журнала
На основе повторных батиметрических съемок изучена морфодинамика приустьевых систем каньонов рр. Мзымта и Псоу, а также двух каньонов вдольберегового питания.
Показано, что интенсивность аккумуляции наносов в отвершках каньонов зависит от удаленности их вершин от устьев рек и берегов. Наибольшее количество материала поступает в отвершки, расположенные вблизи устьев рек и верховьев каньонов, приближенных к берегу. Аккумуляция наносов в отвершках приводит к выдвижению бровки свала глубин в море, увеличению крутизны морского края накапливающегося материала и при достижении его критического уклона, смещению вниз по тальвегам на более низкие уровни. После этого цикла вновь начинается фаза седиментации в верховьях каньонов.
Интенсивность накопления наносов в отвершках приустьевых каньонов во многом зависит от их расположения относительно направления потока наносов. В ходе вдольберегового перемещения крупнообломочные фракции наносов при удалении верховьев каньонов от берега более чем на 100 м попадают в ограниченном количестве.
Подводные каньоны вдольберегового питания Новый и Константиновский, верховья которых смыкаются с подножием пляжей, и блокирование перемещения наносов от устья р. Мзымта оградительными молами порта привели к резкому нарастанию дефицита наносов и сокращению ширины пляжей на участке берега от порта до устья р. Псоу.
На основе повторных батиметрических съѐмок выполнен анализ морфодинамики эрозионных ложбин, образующих систему каньона Новый, включающей центральное русло и два боковых отвершка. Показана обусловленность динамики галечных пляжей с процессами, протекающими в верховьях центрального русла и отвершках каньона Новый, получающему наносы при их вдольбереговом перемещении. В центральное русло и отвершки крупнообломочный материал может попадать только при волнах малой режимной обеспеченности, а глубина их разрушения превышает глубины верховьев каньона. В верхней части центрального русла на дне распространены продольные эрозионные борозды, являющиеся трассами перемещения в сторону моря наносов, попадающих в русло каньона во время штормов. Аккумуляция наносов в верхних частях русла и отвершках каньона приводит к выдвижению бровки свала глубин в море, увеличению крутизны еѐ морского края и при достижении критического значения уклона, смещению накопившегося материала вниз по тальвегам на более низкие уровни под воздействием волн и гравитационного фактора. После реализации этого процесса вновь начинается фаза седиментации в верховьях эрозионных ложбин. Скорость накопления наносов в центральном русле и боковых отвершках во многом зависит от интенсивности их вдольберегового перемещения, обусловленного штормовой активностью моря, и удалѐнностью верховий каньона от берега.
На основе повторных топобатиметрических съёмок приводится анализ
морфодинамики эрозионных ложбин, образующих систему подводного каньона
Константиновский, включающего центральное русло и два боковых отвершка: западный и
восточный. Установлены связи процессов, протекающих в верховьях каньона с динамикой
прилегающих галечных пляжей. В пределах верховья центрального русла шириной вдоль
берега 450 м, выходящего на глубину 10-12 м, сток наносов на глубину происходит по
продольным бороздам, развитым на дне её центральной части до глубин 40-50 м, а вдоль
бортов – до 80 м. Аккумуляция наносов в верхних частях русла и отвершков каньона приводит
к выдвижению бровки свала глубин в море, увеличению крутизны её морского края и, при
достижении критического значения уклона, смещению накопившегося материала под
воздействием волн и гравитации вниз по тальвегам. После этого вновь начинается фаза
седиментации в верховьях эрозионных ложбин. Скорость и объёмы накопления материала в
центральном русле и боковых отвершках во многом зависят от удалённости их верховий от
берега и интенсивности вдольберегового перемещения наносов, обусловленной штормовой
активностью моря.