Архив статей журнала
В статье рассмотрены вопросы анализа и обработки больших массивов метеорологических данных. Целью исследования является обмен опытом в выявлении и корректировке пропущенных и аномальных значений временных рядов метеорологических данных. В рамках исследования разработаны алгоритмы нормализации данных, выявления их индивидуальных и контекстных аномалий, а также корректировки пропущенных и аномальных значений. Особенностями разработанных алгоритмов являются использование модели машинного обучения, основанной на применении деревьев решений, для изучения рядов данных при выявлении пропущенных значений, а также анализ временных и сезонных закономерностей при выявлении индивидуальных и контекстных аномалий на основе специализированных библиотек на языке программирования Python. Разработанные алгоритмы включены в программные модули сервис-ориентированного приложения для получения, обработки и анализа климатических данных при решении сложных мультидисциплинарных научных и прикладных задач экологического мониторинга Байкальской природной территории. Предложенная методика применена для анализа и обработки нескольких временных рядов метеорологических данных, полученных с метеостанций, которые расположены на Байкальской природной территории. Результаты применения методики показали существенное повышение качества обработанных данных, использованных в дальнейшем на практике в задачах моделирования работы автономных энергетических систем инфраструктурных объектов Байкальской природной территории.