Прогнозирование коррозионных дефектов является важной задачей при оценке надежности трубопровода, поскольку позволяет точно предсказать параметры его технического состояния. В настоящее время при использовании статистической модели для моделирования роста коррозии применяются методы коррекции, чтобы уменьшить разрыв между прогнозируемыми значениями и фактическими данными. Это связано с неопределенностями, вызванными технологией инспекций трубопроводов. Целью данного исследования является разработка модели роста размеров коррозионных дефектов нефте - и газопроводов с использованием искусственной нейронной сети (Artificial Neural Network, ANN) в качестве альтернативы существующему методу. Данная модель составлена на основе параметров дефекта, извлеченных из данных встроенного контроля (In-Line Inspection data, ILI) и количественно оцененных с помощью статистического анализа. Разработанная модель дает прогноз развития таких геометрических параметров коррозионного дефекта как глубина и протяженность, таким образом становится возможным прогнозирование скорости роста дефекта. Результаты настоящего исследования помогут спрогнозировать надежность конструкции трубопровода с точки зрения вероятности выхода из строя или оценки срока службы.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.