Архив статей журнала

НЕЛИНЕЙНЫЕ ОБРАТНЫЕ ЗАДАЧИ ДЛЯ НЕКОТОРЫХ УРАВНЕНИЙ С ДРОБНЫМИ ПРОИЗВОДНЫМИ (2023)
Выпуск: Т. 8 № 2 (2023)
Авторы: Федоров Владимир Евгеньевич, Плеханова Марина Васильевна, Иванова Наталья Дмитриевна, Шуклина Анна Фаридовна, Филин Николай Владимирович

Исследуются вопросы разрешимости нелинейных обратных задач с зависящим от времени неизвестным элементом для эволюционных уравнений в банаховых пространствах с производными Герасимова - Капуто. Получена теорема о существовании единственного гладкого решения нелинейной задачи для разрешённого относительно старшей дробной производной уравнения с ограниченным оператором в линейной части. Она использована при исследовании вырожденных эволюционных уравнений при условии p-ограниченности пары операторов в линейной части уравнения - при старшей производной и при искомой функции. В случае действия нелинейного оператора в подпространство без вырождения доказано существование единственного гладкого решения, а при независимости нелинейного оператора от элементов подпространства вырождения показано существование единственного обобщённого решения. Полученные абстрактные результаты для вырожденных уравнений использованы при исследовании обратной задачи для модифицированной системы уравнений Соболева с неизвестными коэффициентами при младших дробных производных по времени.

Сохранить в закладках