ОЦЕНКА СОСТОЯНИЯ СМАЗКИ ПОДШИПНИКОВ КАЧЕНИЯ С ПРИМЕНЕНИЕМ АЛГОРИТМОВ КЛАССИФИКАЦИИ (2024)

Целью данной работы является решение проблемы внеплановых отказов подшипников качения, установленных на промышленном оборудовании, в результате их неправильного обслуживания в процессе эксплуатации. Известно, что до 50% всех внеплановых простоев промышленного оборудования происходит по причине разрушения подшипников. При этом основной причиной отказа подшипников являются нарушения режима смазки тел качения: избыточное и недостаточное количество смазочных материалов. Эти причины составляют до 36% от общего числа отказов подшипников. В процессе эксплуатации оборудования выявить и предупредить все проблемы со смазкой подшипников очень сложно, по причине большого разнообразия факторов, влияющих на их возникновение. Поэтому, актуальной задачей для исследования, становится разработка автоматизированной рекомендательной системы для управления сервисным обслуживанием промышленного оборудования, с контролем смазки подшипниковых узлов. В работе рассматривается метод классификации состояний подшипников в зависимости от их диагностических параметров: показателей виброскорости, виброускорения и температуры. С этой целью применяются алгоритмы классического машинного обучения: модели KNN, RandomForestClassifier и SVM. Для каждой модели определяются гиперпараметры, позволяющие достигать максимальных результатов во время обучения. В процессе проведения исследования выполнен анализ влияния каждого из диагностических параметров - признаков на показатели работы модели классификации. Понимание, какой показатель работы подшипника будет наиболее важным, позволит выбирать приборы контроля состояния оборудования на производственном предприятии осознанно, для решения конкретных производственных задач. Разработанный алгоритм позволяет качественно, с 98% точностью, производить оценку состояния смазки подшипников качения и выдавать рекомендации по проведению своевременного сервисного обслуживания оборудования. Модель - классификатор планируется использовать в составе комплекса по контролю за техническим состоянием оборудования, расширяя возможности диагностики: помимо сведений о вероятности отказа оборудования и прогнозных сроках службы, комплекс диагностики, совмещенный с предлагаемой моделью, позволит воздействовать на ходимость подшипников, путем улучшения качества их смазки.

Тип: Статья
Автор (ы): Криницин Павел Геннадьевич, Ченцов Сергей Васильевич
Ключевые фразы: машинное обучение, МЕТОД ОПОРНЫХ ВЕКТОРОВ SVM, СЛУЧАЙНЫЙ ЛЕС RFC, К-БЛИЖАЙШИХ СОСЕДЕЙ KNN, точность, ПОДШИПНИК, СМАЗКА

Идентификаторы и классификаторы

УДК
004.045. объектная
eLIBRARY ID
69156306
Текстовый фрагмент статьи