РЕАЛИЗАЦИЯ ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ НЕПРЯМОГО ПРОГНОЗИРОВАНИЯ ВЫРАБАТЫВАЕМОЙ ЭЛЕКТРОЭНЕРГИИ СОЛНЕЧНОЙ ЭЛЕКТРОСТАНЦИИ КАК ПРОГРАММЫ ДЛЯ ЭВМ (2024)
Прогноз вырабатываемой электроэнергии солнечной электростанции позволяет эффективно и безопасно управлять электрическими сетями, интегрирующими кластер солнечных электростанций. Штрафные тарифы закупки рынка «сутки вперед» электроэнергии солнечных электростанций, отклоняющейся более чем на 5 % максимальной мощности солнечной электростанции от предоставляемого почасового макета рынка «сутки вперед» выработки солнечной электростанции, актуализируют повышение точности макета рынка «сутки вперед» путем создания эффективных интеллектуальных систем прогнозирования выработки солнечной электростанции. Проведенный анализ существующего программного обеспечения показал отсутствие доступного программного обеспечения для эффективного прогноза выработки солнечной электростанции, целесообразность и актуальность создания ПО, реализующего интеллектуальную систему прогнозирования выработки солнечной электростанции. В настоящем исследовании разработана, апробирована и реализована как программа для ЭВМ на основе модифицированной нечеткой нейросети с механизмом внимания интеллектуальная система непрямого прогнозирования выработки солнечной электростанции. В нотации UML CASE-средством Microsoft Visio созданы диаграмма классов и блочно-модульная архитектура программы для ЭВМ, реализующей интеллектуальную систему непрямого прогнозирования выработки солнечной электростанции. Гибкость созданной программы для ЭВМ обеспечивает блочно-модульная
архитектура. Апробация программы для ЭВМ, реализующей интеллектуальную систему непрямого прогнозирования выработки солнечной электростанции, отражает ее эффективные, робастные результаты и целесообразность ее применения для построения макетов рынка «сутки вперед». База данных SCADA солнечной электростанции легко интегрируется с интеллектуальной системой непрямого прогнозирования вырабатываемой электроэнергии солнечной электростанции.
Идентификаторы и классификаторы
В соответствии с несколькими приоритетами научно-технологического развития РФ
(20 а, б) [1] актуальны результаты данного научного исследования, развивающие интеллектуальные системы солнечной электроэнергетики в Российской Федерации, в том числе для Республики Хакасия, имеющей богатый природный потенциал для увеличения мощности сети солнечных электростанций (величина инсоляции соответствует уровню инсоляции Краснодарского края [2]). Прогноз вырабатываемой электроэнергии солнечной электростанции позволяет эффективно и безопасно управлять электрическими сетями, интегрирующими кластер солнечных электростанций [3].
Штрафные тарифы закупки рынка «сутки вперед» электроэнергии солнечных электростанций, отклоняющейся более чем на 5 % максимальной мощности солнечной электростанции от предоставляемого почасового макета рынка «сутки вперед» вырабатываемой электроэнергии солнечной электростанции, актуализируют повышение точности макета рынка «сутки вперед» путем создания эффективных интеллектуальных систем прогнозирования выработки солнечной электростанции.
Нелинейную динамику выработки солнечной электростанции, зависящую от колебанийинсоляции и температуры воздуха линейно и нелинейно соответственно [4], сложно прогнозировать традиционными алгоритмами, в то время как интеллектуальные системы прогнозирования выработки солнечной электростанции в отличие от классических, например интегрированной авторегрессии и т. д., имеют следующие
достоинства: допустимую погрешность макета рынка «сутки вперед», оптимальное управление сегментом солнечных электростанций электрических сетей. Интеллектуальные системы, основанные на нейросетях, имеют преимущество параллельных вычислений, в том числе с использованием современных графических процессоров, что значительно снижает временные затраты на обработку больших данных SCADA для прогноза выработки электроэнергии солнечной электростанции [3].
Список литературы
- Большие вызовы и приоритеты научно-технологического развития. URL: https://xn--m1agf.xn--p1ai/challenges-priorities/ (дата обращения:
20.01.2024). - Значение солнечной инсоляции в г. Абакан (Республика Хакасия). URL: https://www.betaenergy.ru/insolation/abakan/ (дата обращения: 20.01.2024).
- Engel E., Engel N. A review on machine learning applications for solar plants. Sensors (Basel).
2022;22(23):9060. - Liu L., Liu D., Sun Q. et al. Forecasting power output of photovoltaic system using a BP network method. Energy Procedia. 2017;142:80–786.
- SolarSoft. URL: https://www.lmsal.com/solarsoft/(дата обращения: 20.01.2024).
- Solar Array Simulator DC Power Supply. URL: https://www.chromausa.com/product/solar-array-simulator/(дата обращения: 20.01.2024).
- NREL. System Advisor Model (SAM). URL: https://sam.nrel.gov (дата обращения: 20.01.2024).
- Helioscope. URL: https://helioscope.aurorasolar.com(дата обращения: 20.01.2024).
- Aurora. URL: https://aurorasolar.com (дата обращения: 20.01.2024).
- Photovoltaic Geographical Information System(PVGIS). URL: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?map=africa&lang=en (дата обращения:
20.01.2024). - SolarServer. PV forecast Europe. URL: https://www.solarserver.com/service/solar-photovoltaic-power-forecast-for-worldwide-locations/pv-forecast-europe.html (дата обращения: 20.01.2024).
- PVsyst. Download. URL: http://www.pvsyst.com/en/software/download (дата обращения: 20.01.2024).
- Clean Power Research. URL: https://www.cleanpower.com (дата обращения: 20.01.2024).
- Энгель Е. А., Энгель Н. Е. Система непрямого прогнозирования вырабатываемой электроэнергии массивом солнечных панелей на основе модифицированной нечеткой нейросети // Журнал Сибирского федерального университета. Серия: Техника
и технологии. 2023. Т. 16, № 6. С. 744–758. - Энгель Е. А., Энгель Н. Е. Интеллектуальная система прогнозирования температуры на основе модифицированной нечеткой нейросети // Вестник кибернетики. 2023. Т. 22, № 3. С. 76–81.
Выпуск
Другие статьи выпуска
В данной статье рассматривается эффективность различных статистических тестов, предназначенных для обнаружения гетероскедастичности в модели. Описывается методология исследования, принцип построения синтетических данных с разными типами гетероскедастичности. Приведены детальные результаты анализа, определены лучшие тесты для решения задач детектирования гомо- и гетероскедастичности. Применен аппарат деревьев классификации для определения лучших тестов в зависимости от свойств выборки, показано наличие данных закономерностей. Отмечено, что в практических работах необходимо проведение дополнительных исследований, направленных
на установление лучшего статистического теста при наблюдаемых свойствах данных. Кроме того, сделан вывод о том, что для рассматриваемых типов гетероскедастичности все выбранные тесты показывают значительный процент ошибок, что говорит о необходимости продолжения соответствующих теоретических исследований и разработке новых способов детектирования разных форм гетероскедастичности.
В настоящей работе выполнено исследование поверхностного натяжения на границе
воздух – водный раствор хлорида натрия с помощью высокочувствительного метода вращающейся капли на тензиометре SDТ фирмы KRUSS. Определена изотерма поверхностного натяжения при температуре 20 °C в интервале концентрации 0–25 %. Для разных значений концентрации получена температурная зависимость коэффициента поверхностного натяжения в интервале от 20 до 70 °C. Определен температурный коэффициент поверхностного натяжения α = 0,18 мН/(м×К).
В статье представлен способ обработки акустических сигналов при возникновении несанкционированного действия на магистральном трубопроводе на примере проведенных экспериментов по имитации незаконной врезки в виде сверления тела металлической трубы. В рамках эксперимента были записаны акустические сигналы и проведена обработка на основе метода быстрого преобразования Фурье. По результатам были идентифицированы пики характерных частот в пределах каждого эксперимента. Исследование направлено на повышение безопасности протяженных объектов особой государственной важности путем определения угрозы по характерным пикам частот получаемых при обработке акустических сигналов от противоправных действий и, как следствие, оперативного оповещения службы безопасности.
В работе описан алгоритмический способ определения численных оценок параметров простой формы вложенной кусочно-линейной регрессии методом смешанного оценивания. Его суть состоит в их одновременной идентификации методами наименьших модулей и антиробастного оценивания, каждый из которых «работает» на своей подвыборке данных исходной выборки. Этот способ сводится к решению задачи линейно-булевого программирования. Решен численный пример.
Важной составляющей экономической стабильности организации является совершенствование управления, в том числе использование программного обеспечения для календарного планирования стратегии развития проектной компании. Современные менеджеры часто используют визуализацию в виде диаграмм задач при работе над своими проектами. Диаграмма Ганта представляет собой один из наиболее эффективных типов диаграмм. Программные продукты для создания диаграмм Ганта стали важными инструментами и лидерами в техническом арсенале многих проектных компаний.
В статье представлены результаты исследования, выполненного с применением cистемы поддержки принятия решений (СППР) «Выбор». Отражение сути математического метода анализа иерархии, разработанного Томасом Саати, заключается в выборе наиболее предпочтительных альтернатив при принятии решений. С помощью аналитической системы искусственного интеллекта были проранжированы альтернативы в виде программного продукта (ПП) для построения диаграмм Ганта и сделан вывод о лучшем программном решении.
Причина изучения категории «эффективность» обусловлена множественностью подходов, методов, видов дефиниции и интерпретацией в различных сферах; возможностями и трудностями в процессе принятия решений; влиянием субъективных факторов в отдельных подходах и методах. Это позволяет осуществлять поиск возможностей повышения эффективности деятельности предприятия сферы услуг с помощью разработки информационной системы, спроектированной на основе алгоритма выявления значимых факторов. Целью исследования является разработка алгоритма выявления факторов, позволяющих повысить эффективность деятельности предприятия.
Для решения проблемы разработан алгоритм выявления факторов повышения эффективности деятельности предприятия сферы услуг. В основу положены процессы сбора, обработки данных Федеральной службы государственной статистики по факторам, ограничивающим деятельность организаций этого вида деятельности; по показателям, отражающим деятельность в динамике. Использованы результаты экспертного опроса, объединяющего пять подходов к оценке эффективности и учитывающего специфику изучаемого вида деятельности.
Рассмотрены вопросы моделирования вычислительных процессов, позволяющих оценить потенциальные возможности используемых программных средств по негативному влиянию на работу различных видов человеко-машинных систем, в том числе обладающих признаками искусственного интеллекта. В ходе численного эксперимента анализировались программы, предоставляющие интеллектуальную поддержку роботам-ассистентам преподавателей и реализующие определенные функции в вычислительном комплексе «умного дома», с учетом их агрессивного поведения. Обсужден ряд вопросов, связанных с результатами этого эксперимента. Показан подход, позволяющий выделить группу операторов машинного языка программирования, имеющих потенциал для формирования программных закладок общего и специального видов, влияющих на информационную экологию и корректную работу компонентов «умного дома». Даны рекомендации по формированию набора признаков агрессивности в зависимости от специфики применения конкретных программных средств.
В данной работе предложен метод, комбинирующий вейвлет-преобразования и методы машинного обучения, для классификации состояния растительных культур по цветным цифровым изображениям. Входными данными для классификации являлся сформированный вектор текстурных признаков Харалика.
Реализована программа на высокоуровневом языке программирования Python для классификации цифровых изображений с использованием многоуровневого дискретного вейвлет-преобразования Добеши и классификационных методов машинного обучения – классической логистической регрессии и персептрона. Показана эффективность предложенного метода в решении задачи многоклассовой классификации изображений, сделаны соответствующие выводы, оценены перспективы метода.
В данной работе представлена модель системы, которая позволяет отслеживать положение позвоночника пользователя, собирать статистику по его осанке, анализировать ее с помощью нейросети и предлагать пользователю индивидуальные рекомендации по подбору упражнений для коррекции осанки. В статье внимание уделяется мобильному приложению, потому что это удобно с точки зрения использования устройства и упрощает процесс разработки. В результате были определены и описаны требования к структуре и функционированию системы.
Работа посвящена современному методу сейсмической инверсии. Проведена синтетическая привязка скважин для моделирования пространственного распределения импеданса. Построены низкочастотная фоновая модель и куб акустического импеданса, нормализованы данные плотностного и акустического каротажей. Выполнены анализ петроупругих свойств, динамический анализ и даны рекомендации на заложение бурения скважин. Использованный метод в равной мере учитывает геологическую информацию на основе структурной модели для сейсмических горизонтов.
Издательство
- Издательство
- СУРГУ
- Регион
- Россия, Сургут
- Почтовый адрес
- 628412, Ханты-Мансийский автономный округ – Югра, г. Сургут, пр. Ленина, д. 1
- Юр. адрес
- 628412, Ханты-Мансийский автономный округ – Югра, г. Сургут, пр. Ленина, д. 1
- ФИО
- Косенок Сергей Михайлович (РЕКТОР)
- E-mail адрес
- secretar@surgu.ru
- Контактный телефон
- +7 (346) 2762900