- Bolon-Canedo V., Sanchez-Marono N., Alonso-Betanzos A. Feature Selection for High-Dimensional Data. Heidelberg: Springer, 2015. 163 p.
- Qi Z., Wang H., He T., Li J., Gao H. FRIEND: Feature selection on inconsistent data // Neurocomputing. 2020. V. 391. P. 52-64.
- Sha Z.-C., Liu1 Z.-M., Ma C., Chen J. Feature selection for multi-label classification by maximizing full-dimensional conditional mutual information // Applied Intelligence. 2021. V. 51. P. 326-340. EDN: MOZODG
- Luke S. Essentials of Metaheuristics [Электронный ресурс]. Режим доступа: https://cs.gmu.edu/~sean/book/metaheuristics.
- Boussaid I., Lepagnot J., Siarry P. A Survey on Optimization Metaheuristics // Inf. Sci. 2013. V. 237. P. 82-117.
- Garcia J., Crawford B., Soto R., Astorga G. A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics // Swarm and Evolutionary Computation. 2019. V. 44. P. 646-664.
- Poli R., Kennedy J., Blackwell T. Particle swarm optimization // Swarm Intelligence. 2007. V. 1. P. 33-57.
- Neshat M., Sepidnam G., Sargolzaei M. Swallow swarm optimization algorithm: a new method to optimization // Neural Computing and Application. 2013. V. 23. P. 429-454.
- Bouzidi S., Riffi M.E., Bouzidi M., Moucouf M. The Discrete Swallow Swarm Optimization for Flow-Shop Scheduling Problem // Advances in Intelligent Systems and Computing. 2019. V. 915. P. 228-236. EDN: MWDJZI
-
Bouzidi S., Riffi M.E. Discrete Swallow Swarm Optimization algorithm for Travelling Salesman Problem // Proceedings of the 2017 International Conference on Smart Digital Environment. 2017. P. 80-84.
-
Hodashinsky I., Sarin K., Shelupanov A., Slezkin A. Feature selection based on swallow swarm optimization for fuzzy classification // Symmetry. 2019. V. 11. № 11. P. 1423. EDN: NNFYRX
-
Cover T., Hart P. Nearest neighbor pattern classification // IEEE Transactions on Information Theory. 1967. V. 13. P. 21-27.
-
Roh S.-Be., Pedrycz W., Ahn T.-C. A design of granular fuzzy classifier // Expert Systems with Applications. 2014. V. 41. P. 6786-6795.
-
Mekh M.A., Hodashinsky I.A. Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers // Journal of Computer and Systems Sciences International. 2017. V. 56. P. 616-626. EDN: PSCAVN
-
Evsukoff A.G., Galichet S., de Lima B.S.L.P., Ebecken N.F.F. Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization // Fuzzy Sets and Systems. 2009. V. 160. P. 857-881.
-
Hodashinsky I.A., Gorbunov I.V. Algorithms of the tradeoff between accuracy and complexity in the design of fuzzy approximators // Optoelectronics, Instrumentation and Data Processing. 2013. V. 49. P. 569-577. EDN: SLJNUD
-
Jiang D., Peng C., Fan Z., Chen Y. Modified binary differential evolution for solving wind farm layout optimization problems // Proceedings of the IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES). 2013. P. 23-28.
-
Costa M.F.P., Rocha A.M.A.C., Francisco R.B., Fernandes E.M.G.P. Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization // Advances in Operations Research. 2014. Article ID 215182.
-
Crawford B. et al. Putting continuous metaheuristics to work in binary search spaces // Complexity. 2017. Article ID 8404231.
-
Wang L., Wang X., Zhen F.J., Zhen L. A novel probability binary particle swarm optimization algorithm and its application // Journal of Software. 2008. V. 3. № 9. P. 28-35. EDN: PHUSFT
-
Kennedy J., Eberhart R. A discrete binary version of the particle swarm algorithm // Proceedings of the IEEE International Conference on Computational Cybernetics and Simulation. 1997. P. 4104-4108.
-
Dahi Z.A.E.M., Mezioud C., Draa A. Binary Bat Algorithm: On the Efficiency of Mapping Functions When Handling Binary Problems Using Continuous-variable-based Metaheuristics // IFIP Advances in Information and Communication Technology. V. 456. Cham: Springer, 2015. P. 3-14.
-
Rashedi E., Nezamabadi-pour H., Saryazdi S. BGSA: binary gravitational search algorithm // Natural Computing. 2009. V. 9. № 3. P. 727-745.
-
Mirhosseini M., Nezamabadi-pour H. BICA: a binary imperialist competitive algorithm and its application in CBIR systems // International Journal of Machine Learning and Cybernetics. 2018. V. 9. P. 2043-2057. EDN: NMJZUK
-
Emary E., Zawbaa H.M., Hassanien A.E. Binary grey wolf optimization approaches for feature selection // Neurocomputing. 2016. V. 172. P. 371-381.
-
Qasim O.S., Algamal Z.Y. Feature selection using different transfer functions for binary bat algorithm // International Journal of Mathematical, Engineering and Management Sciences. 2020. V. 5. № 4. P. 697-706.
-
Sayed G.I., Tharwat A., Hassanien A.E. Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection // Applied Intelligence. 2019. V. 49. P. 188-205.
-
Too J., Mirjalili S. A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study // Knowledge-Based Systems. 2021. V. 212. 106553. EDN: VZWDUP
-
Arora S., Anand P. Binary Butterfly Optimization Approaches for Feature Selection // Expert Systems with Application. 2019. V. 116. P. 147-160.
-
Zhang X. et al. Gaussian mutational chaotic fruit fly-built optimization and feature selection // Expert Systems with Application. 2020. V. 141. P. 112976.
-
Ji B. et al. Bio-inspired feature selection: An improved binary particle swarm optimization approach // IEEE Access. 2020. V. 8. P. 85989-86002.
-
Mirjalili S., Lewis A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization // Swarm and Evolutionary Computation. 2013. V. 9. P. 1-14.
-
Bardamova M., Konev A., Hodashinsky I., Shelupanov A. A fuzzy classifier with feature selection based on the gravitational search algorithm // Symmetry. 2018. V. 10. № 11. P. 609. EDN: SBHTCM
-
Dahi Z.A.E.M., Mezioud C., Draa A. On the efficiency of the binary flower pollination algorithm: Application on the antenna positioning problem // Applied Soft Computing. 2016. V. 47. P. 395-414.
-
Yavuz G., Aydin D. Angle Modulated Artificial Bee Colony Algorithms for Feature Selection // Applied Computational Intelligence and Soft Computing. 2016. Article ID 9569161.
-
Pampara G., Franken N., Engelbrecht A. Combining particle swarm optimisation with angle modulation to solve binary problems // Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1. IEEE Press, Piscataway, NJ, 2005, P. 89-96.
-
Pampara G., Engelbrecht A.P., Franken N. Binary differential evolution // Proceedings of the IEEE Congress on Evolutionary Computation (CEC'06). IEEE, 2006. P. 1873-1879.
-
Yuan X., Nie H., Su A., Wang L., Yuan Y. An Improved Binary Particle Swarm Optimization for Unit Commitment Problem // Expert Systems with Application. 2009. V. 36. P. 8049-8055.
-
Siqueira H., Figueiredo E., Macedo M., Santana C.J., Bastos-868 Filho C.J., Gokhale A.A. Boolean binary cat swarm optimization algorithm // 2018 IEEE Latin American Conference on 870 Computational Intelligence (LA-CCI). IEEE, 2018. P. 1-6.
-
Kiran M.S., Gunduz M. XOR-Based Artificial Bee Colony Algorithm for Binary Optimization // Turkish Journal of Electrical Engineering and Computer Sciences. 2013. V. 21. P. 2307-2328.
-
Singh U., Salgotra R., Rattan M. A Novel Binary Spider Monkey Optimization Algorithm for Thinning of Concentric Circular Antenna Arrays // IETE Journal of Research. 2016. V. 62. P. 736-744.
-
Hodashinsky I.A., Nemirovich-Danchenko M.M., Samsonov S.S. Feature selection for fuzzy classifier using the spider monkey algorithm // Business Informatics. 2019. V. 13. № 2. P. 29-42. EDN: ZYJLFR
-
Srikanth K. et al. Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem // Computers and Electrical Engineering. 2018. V. 70. P. 243-260.
-
Manju A., Nigam M.J. Applications of quantum inspired computational intelligence: a survey // Artificial Intelligence Review. 2014. V. 42. P. 79-156. EDN: SPCLSF
-
Hamed H.N.A., Kasabov N.K., Shamsuddin S.M. Quantum inspired particle swarm optimization for feature selection and parameter optimization in evolving spiking neural networks for classification tasks // Evolutionary algorithms. IntechOpen, 2011. P. 133-148.
-
Zouache D., Abdelaziz F.B. A cooperative swarm intelligence algorithm based on quantum-inspired and rough sets for feature selection // Computers and Industrial Engineering. 2018. V. 115. P. 26-36.
-
Han K.-H., Kim J.-H. Quantum-Inspired Evolutionary Algorithms with a New Termination Criterion, He Gate, and Two-Phase Scheme // IEEE Transactions on Evolutionary Computation. 2004. V. 8. P. 164-171.
-
Nezamabadi-pour H. A quantum-inspired gravitational search algorithm for binary encoded optimization problems // Engineering Applications of Artificial Intelligence. 2015. V. 40. P. 62-75.
-
Ходашинский И.А., Мех М.А. Построение нечеткого классификатора на основе методов гармонического поиска // Программирование. 2017. № 1. С. 54-65. EDN: XYGUOR
-
Программный код и инструкции [Электронный ресурс]. Режим доступа: https://gitlab.com/core_developers/fuzzy_core/-/tree/master/experiments/binarization_methods.