ПИРОГЕННОЕ ИЗМЕНЕНИЕ БОЛОТНОЙ РАСТИТЕЛЬНОСТИ И ТОРФА В ЗАПАДНОЙ СИБИРИ (2024)
Природные пожары являются важным экологическим фактором, определяющим интенсивность круговорота углерода на болотах. В статье представлены оценки последствий пирогенной трансформации и современного состояния выгоревших участков болот таежной и лесотундровой зон Западной Сибири через 6-8 лет после пожара с учетом их внутрифациальной неоднородности. Полевые исследования проведены в 2022 г. на трех болотах (всего 13 постпирогенных и фоновых точек) и включали тахеометрическую съемку поверхности, оценку встречаемости видов травяно-кустарничкового и мохово-лишайникового ярусов, отбор образцов для лабораторного определения физико-технических свойств и ботанического состава торфа. В качестве видов-индикаторов восстановления рассматривали сфагновые мхи, Polytrichum strictum, лишайники и кустарнички. В результате исследования обнаружено, что интенсивность пирогенной трансформации определяется исходным состоянием болотной экосистемы и увеличивается в ряду: участок гидролесомелиорации на верховом Бакчарском болоте - плоскобугристое болото - верховое Усть-Бакчарское болото, осушенное для торфодобычи. На большинстве исследованных точек выгоранию оказались более подвержены понижения микрорельефа, в то время как положительные формы сохранились, либо выгорели частично. Трансформация свойств торфяной залежи распространяется по глубине за пределы выгоревшего слоя и проявляется в снижении влажности, увеличении зольности, плотности и степени гумификации. На первых этапах постпирогенных сукцессий выявлены схожие закономерности для болот таежной и лесотундровой зон, проявляющиеся в интенсивном зарастании P. strictum. По результатам исследования сделан вывод, что участок гидролесомелиорации на Бакчарском болоте имеет возможность восстановления видового состава растительного покрова и возобновления аккумуляции торфа. На Усть-Бакчарском болоте произошли необратимые изменения растительного покрова, где восстановление сфагновых мхов не происходит даже через 20 лет после пожара.
Идентификаторы и классификаторы
В настоящее время происходит зарастание каналов и частичное восстановление болота. В 2016 г. произошло выгорание болота на площади около 5 км2 в пределах его осушенной части. Полевые исследования проведены на пяти точках в пределах контура пожара 2016 г., на точке, выгоревшей около 30 лет назад, и фоновом участке (см. табл. 1). Усть-Бакчарское болото расположено на террасе р. Бакчар. Площадь болота составляет 3,5 км2 , из которых 1,6 км2 было осушено в 1980 г. для добычи торфа, расстояние между каналами – 40 м. В разные годы после осушения болото подвергалось выгоранию, последний крупный пожар произошел в 2014 г. на площади 0,5 км2 . Полевые исследования проведены на двух точках пожара 2014 г., в качестве фоновой точки был выбран участок более старого пожара в связи с отсутствием нетронутых пожаром участков на данном болоте (см. табл. 1). До пожаров изучаемые участки Бакчарского и Усть-Бакчарского болот были представлены сосново-кустарничковосфагновым растительным сообществом. Средняя мощность торфяной залежи 2,5–3,3 м.
Список литературы
-
Ахметьева Н.П., Белова С.Э., Джамалов Р.Г., Куличевская И.С., Лапина Е.Е., Михайлова А.В. Естественное восстановление болот после пожаров // Водные ресурсы. 2014. Т. 41. № 4. С. 343-354. DOI: 10.7868/S0321059614040026 EDN: SFAKLP
-
Базанов В.А., Егоров Б.А., Льготин В.А., Скугарев А.А. Современная пространственная динамика Большого Васюганского болота (на примере междуречья рек Икса-Шегарка) // Большое Васюганское болото. Современное состояние и процессы развития / под ред. М.В. Кабанова. Томск: Изд-во Института оптики атмосферы СО РАН, 2002. С. 190-196.
-
Беручашвили Н.Л., Жучкова В.К. Методы комплексных физико-географических исследований. М.: Изд-во МГУ, 1997. 320 с.
-
Вомперский С.Э., Глухова Т.В., Смагина М.В., Ковалев А.Г. Условия и последствия пожаров в сосняках на осушенных болотах // Лесоведение. 2007. № 6. С. 35-44. EDN: IBJWNL
-
Гизатуллин А.Т., Алексеенко Н.А., Моисеева Н.А. Использование данных дистанционного зондирования для предупреждения возгораний торфоразработок // Вестн. Моск. ун-та. Сер. 5. Геогр. 2020. № 2. С. 45-52. EDN: WCUVYC
-
Глухова Т.В., Сирин А.А. Потери почвенного углерода при пожаре на осушенном лесном верховом болоте // Почвоведение. 2018. № 5. С. 580-588. EDN: UPGFJE
-
Копотева Т.А., Купцова В.А. Влияние пожаров на функционирование фитоценозов торфяных болот Среднеамурской низменности // Экология. 2016. № 1. С. 14-21. EDN: VIPOYH
-
Малащук А.А., Филиппов Д.А. Постпирогенная динамика растительного покрова верхового болота Барское (Вологодская область) // Трансформация экосистем. 2021. № 4(1). С. 104-121. EDN: GFFESB
-
Московченко Д.В., Арефьев С.П., Московченко М.Д., Юртаев А.А. Пространственно-временной анализ природных пожаров в лесотундре Западной Сибири // Сибирский экологический журнал. 2020. Т. 27. № 2. С. 243-255. EDN: FZHAIS
-
Наставления гидрометеорологическим станциям и постам. Вып. 8: Гидрометеорологические наблюдения на болотах. Л.: Гидрометеоиздат, 1990. 360 с.
-
Сизов О.С., Цымбарович П.Р., Ежова Е.В., Соромотин А.В., Приходько Н.В. Оценка постпирогенной динамики тундровой растительности на севере Западной Сибири за последние 50 лет (1968-2018) на основе данных ДЗЗ детального и высокого разрешения // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 4. С. 137-153. EDN: WSEPUR
-
Синюткина А.А., Гашкова Л.П., Малолетко А.А., Магур М.Г., Харанжевская Ю.А. Трансформация поверхности и растительного покрова осушенных верховых болот юго-востока Западной Сибири // Вестник Томского гос. ун-та. Биология. 2018. № 43. С. 196-223. EDN: VJDBJT
-
Сирин А.А., Макаров Д.А., Гуммерт И., Маслов А.А., Гульбе Я.И. Глубина прогорания торфа и потери углерода при лесном подземном пожаре // Лесоведение. 2019. № 5. С. 410-422. EDN: IDMKDK
-
Торфяные болота центральных областей Европейской части России: их трансформация за последние 100 лет / Н.П. Ахметьева, А.В. Михайлова, Г.Н. Кричевец, А.Ю. Беляев. М.: ГЕОС, 2020. 134 с. EDN: EPYTMQ
-
Benscoter B.W., Greenacre D., Turetsky M.R. Wildfire as a key determinant of peatland microtopography, Canadian Journal of Forest Research, 2015, no. 45, p. 1133-1137,. DOI: 10.1139/cjfr-2015-0028
-
Benscoter B.W., Vitt D.H. Spatial patterns and temporal trajectories of the bog ground layer along a postfire chronosequence, Ecosystems, 2008, no. 11, p. 1054-1064,. DOI: 10.1007/s10021-008-9178-4 EDN: EEFETT
-
Benscoter B.W., Vitt D.H., Wieder R.K. Association of postfire peat accumulation and microtopography in boreal bogs, Canadian Journal of Forest Research, 2005, no. 35, p. 2188-2193.
-
Benscoter B.W., Wieder R.K. Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire, Canadian Journal of Forest Research, 2003, no. 33(12), p. 2509-2513,. DOI: 10.1139/x03-162 EDN: MEQVCJ
-
Borren W., Bleuten W., Lapshina E.D. Holocene peat and carbon accumulation rates in the southern taiga of wes-tern Siberia, Quat. Res., 2004, no. 61, p. 42-51,. DOI: 10.1016/j.yqres.2003.09.002 EDN: LIJMDL
-
Chambers F.M., Beilman D.W., Yu Z. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostructudies of climate and peatland carbon dynamic, Mires and Peat, 2011, vol. 7, article 07, p. 1-10.
-
Feurdean A., Florescu G., Tantau I. et al. Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia, Quaternary Science Reviews, 2020, no. 244, 106495,. DOI: 10.1016/j.quascirev.2020.106495 EDN: KXSXIE
-
Kettridge N., Turetsky M., Sherwood J. et al. Moderate drop in water table increases peatland vulnerability to post-fire regime shift, Scientific Reports, 2015, no. 5, 8063,. DOI: 10.1038/srep08063
-
Moore P.A., Lukenbach M.C., Kettridge N. et al. Peatland water repellency: Importance of soil water content, moss species, and burn severity, Journal of Hydrology, 2017, no. 554, p. 656-665.
-
Sinyutkina A. Drainage consequences and self-restoration of drained raised bogs in the south-eastern part of Western Siberia: Peat accumulation and vegetation dynamics, Catena, 2021, no. 205, 105464,. DOI: 10.1016/j.catena.2021.105464 EDN: LORHKK
-
Sinyutkina A.A., Gashkova L.P., Koronatova N.G. et al. Postfire ecological consequences within the drained site of the Great Vasyugan Mire: retrospective water-thermal regime and pyrogenic disturbance estimation, IOP Conference Series: Earth Environment Science, 2020, vol. 408, 012037.
-
Thompson D.K., Waddington J.M. Wildfire effects on vadose zone hydrology in forested boreal peatland microforms, Journal of Hydrology, 2013, no. 486, p. 48-56.
-
Taminskas J., Linkeviciene R., Simanauskiene R. et al. Climate change and water table fluctuation: Implications for raised bog surface variability, Geomorphology, 2018, no. 304, p. 40-49,. DOI: 10.1016/j.geomorph.2017.12.026 EDN: QNDRGY
-
Булыгина О.Н., Разуваев В.Н., Коршунова Н.Н., Швец Н.В. Описание массива данных месячных сумм осадков на станциях России: свидетельство о государственной регистрации базы данных № 2015620394. URL: http://meteo.ru/it/178-aisori (дата обращения 14.02.2022).
-
FIRMS (Fire Information for Resource Management System), URL: https://firms.modaps.eosdis.nasa.gov (дата обращения 10.02.2022).
Выпуск
Другие статьи выпуска
На основании данных океанографических экспедиций Международного полярного года 2007-2008 гг. (617 станций) были рассчитаны объемные характеристики и время обновления тихоокеанских вод (ТВ) на акватории Северного Ледовитого океана. Установлены характерные изопикнические поверхности, соответствующие их верхней и нижней границам (соответственно 25,5 и 27,5 кг/м3), рассчитана толщина между изопикнами и эквивалентная толщина (т. е. условная толщина нетрансформированной «чистой» водной массы), границы распространения по исчезновению максимума силикатов в выбранном интервале плотностей. Воды тихоокеанского происхождения распространяются на север вплоть до приполюсного района (толщина до 40-50 м), на западе прослеживаются вплоть до северной части моря Лаптевых (толщины 20-30 м), на востоке сохраняются в малотрансформированном виде (толщина более 100 м) вплоть до Канадского Арктического архипелага, для них характерны глубины 50-150 м. Наибольшая толщина ТВ (более 150 м) характерна для круговорота Бофорта. Был оценен общий объем «чистых» (нетрансформированных) тихоокеанских вод на акватории Северного Ледовитого океана, он составил (197 ± 19) 103 км3, или около 1,1% от всего объема Северного Ледовитого океана. Объем тихоокеанских вод с учетом их перемешивания с окружающими водами между выбранными изопикническими поверхностями составил (313 ± 16) · 103 км3, что составляет около 1,7% объема Северного Ледовитого океана. С учетом характерного потока ТВ через Берингов пролив их время обновления в Арктическом бассейне оценено в 5-6 лет.
В статье предложена методика выявления «оживающих» сельских населенных пунктов (СНП). На примере Тверской области показано, какие особенности географического положения поселений определяют их возможности для ревитализации. Проведенная ранее типология, построенная на анализе космических снимков, показала большую дифференциацию в степени деградации СНП, отнесенных по переписи 2010 г. к категории «без населения». Дальнейшая работа по определению ведущих факторов ревитализации была построена на изучении тех СНП, где в наибольшей степени сохранились дома и хозяйственные постройки, идентифицируемые по космическим снимкам. В качестве ключевых черт географического положения, влияющих на перспективы оживления территории, выбраны близость к рекам и водоемам, положение относительно федеральных и региональных автодорог, нахождение вблизи областного и/или районного центра. Признаками, свидетельствующими о ревитализации СНП, стали наличие зарегистрированных жителей (по данным текущего учета) и отмежеванных кадастровых участков. Исследование показало, что треть всех СНП, которые в 2010 г. были отражены в статистике как пункты «без населения», в настоящее время могут считаться «оживающими». Для Тверской области ключевым фактором ревитализации СНП является его близость к реке, главным образом к Волге. Другой важный фактор - нахождение в зоне влияния основных центров, в первую очередь Твери. Основной функцией является рекреационное (дачное) использование таких деревень.
Рассматриваются возможность и ограничения применения общепринятых алгоритмов детектирования поврежденных огнем лесных территорий средствами дистанционного зондирования, которые позволяют системам мониторинга в автоматическом режиме формировать данные о площадях пожаров и площадях, на которых в последующем фиксируется гибель лесных насаждений. Результирующие размеры детектируемых площадей пожаров обладают погрешностью измерений, величины которых определены на основе единовременных данных, установленных в ходе исследований в отношении обширной территории за один лесопожарный сезон. Лесные пожары, в зависимости от географических особенностей территории, имеют различные пространственно-временные и качественные характеристики, поэтому сопровождаются неоднородными повреждениями лесов, что влияет на точность дистанционного определения гари или горельника. В связи с этим применение установленной величины погрешности при исследованиях на локальном уровне может привести к неточности результатов. Анализ космических снимков земель лесного фонда Тверской области за 2007-2022 гг. показал необходимость установления региональных величин погрешности измерений площадей, пройденных пожарами. Сопоставление производных данных среднего пространственного разрешения с данными высокого пространственного разрешения доказывает наличие региональной величины отклонения от установленной величины погрешности измерений, достигающей значительных размеров при относительно малых площадях детектируемых участков. Исследование показало целесообразность установления региональных величин погрешности измерений пирогенного воздействия на лесные территории. Применение полученных результатов позволит повысить точность определения площадей лесных пожаров и размера связанного с ними ущерба по данным дистанционного мониторинга.
С целью выявления особенностей вариаций изотопного состава кислорода и водорода атмосферных осадков в Москве и процессов, определяющих формирование изотопного состава осадков в течение 2017-2019 гг. на метеоплощадке метеорологической обсерватории МГУ, были отобраны пробы всех выпадавших осадков: 2017 г. - 158 проб, 2018 г. - 119 проб, 2019 г. - 143 пробы. Проведенное исследование является продолжением непрерывных измерений изотопного состава осадков, начатых авторами в 2014 г. Изучение изотопного состава осадков метеообсерватории МГУ поддержано МАГАТЭ и стало частью международной базы данных по метеоосадкам (GNIP). Показано, что внутригодовая изменчивость изотопного состава осадков имеет явно выраженную сезонность: наиболее изотопно тяжелые осадки выпадали с мая по август, наиболее изотопно легкие осадки выпадали в декабре - феврале, что, в основном, обусловлено сезонными вариациями температур воздуха. Коэффициент связи среднемесячных значений δ18О осадков и температур воздуха для исследуемого периода варьировал от 0,34 до 0,39‰/°С, что согласуется с ранее полученными данными для осадков Москвы. Соотношение значений δ2Н и δ18О в осадках близко к соотношению δ2Н-δ18О для глобальной линии метеорных вод, что отражает в целом равновесные условия формирования осадков. Установлено, что в летние месяцы на изотопный состав заметное влияние оказывает подоблачное испарение. В распределении значений дейтериевого эксцесса в осадках не выявлено строгой сезонности, однако показано, что более низкие значения dexc (ниже 11‰ - среднего значения за трехлетний период) характерны для летних месяцев (июль - август), что, вероятно, обусловлено влиянием подоблачного испарения в условиях низкой относительной влажности и высоких температур воздуха. С октября по апрель преобладали более высокие значения dexc (выше 11‰).
Проанализирована эколого-географическая дифференциация населения птиц в 18 пунктах островов Уруп и Итуруп. Использован метод маршрутного учета. Суммарно отмечено 109 видов, в т. ч. 62 на двух островах. Коэффициент фаунистической общности между сухопутными местообитаниями островов 72%, прибрежно-морскими - 71%. Коэффициент сходства населения птиц между сухопутными местообитаниями островов 36%, прибрежно-морскими - 29%. Значения плотности населения птиц островов близки как между сухопутными (610-757 ос./км²), так и прибрежно-морскими (536-607 ос./км²) местообитаниями. Высокая плотность населения повсеместно обусловлена обилием численно преобладающих видов дальневосточного островного и китайского типов фаун. Суммарно на совокупность особей видов этих фаун почти повсеместно приходится более 50% населения в сухопутных (282-469 ос./км²) и прибрежно-морских (172-333 ос./км²) местообитаниях. Характерна пространственно-временная динамика населения птиц.
В развитии многолетних исследований авторов в статье представлены результаты углубленного изучения рельефа дна Обской губы Карского моря, уточняющие существующие представления и направленные на решение фундаментальной проблемы реконструкции условий формирования рельефа дна мелководных заливов Карского моря в позднем плейстоцене и голоцене. Целью работы являлось создание региональной характеристики геоморфологического строения дна Обской губы. В качестве исходных данных о рельефе дна использовались морские навигационные карты и промерные планшеты ГУНиО масштаба 1:50 000 - 1:100 000. На основе ручной авторской обработки и интерпретации картографического материала была создана детальная цифровая модель рельефа (ЦМР) дна и батиметрическая карта с сечением изобат через 1,0 м масштаба 1:200 000. При составлении геоморфологической карты помимо батиметрических данных был привлечен большой объем литературных и фондовых материалов по геоморфологии, геологии и геокриологии региона, а разработка оригинальной морфогенетической легенды велась с учетом сложившихся представлений об условиях формирования рельефа перигляциальных равнин на регрессивном этапе развития шельфа Карского моря. Установлено, что в пределах губы преобладает реликтовый флювиальный рельеф, частично переработанный субаквальными процессами в ходе послеледниковой трансгрессии и на современном этапе. Выявлены важнейшие особенности строения и плановые очертания затопленной прадолины Оби и древней эрозионной гидросети в целом. Выделенные отдельные формы и элементы рельефа учитывают масштаб объектов и степень их генерализации на карте и дают представление о развитии рельефообразующих процессов как на субаэральном этапе, так и в субаквальных условиях, включая особенности современной динамики рельефа берегов и дна.
Палеоэкологические условия в преддельтовом районе Северного Каспия реконструированы на основе результатов комплексного изучения керна скважины на структуре Рыбачья, вскрывшей голоценовые осадки. Выполнены геохимический, гранулометрический, малакофаунистический, диатомовый и микрофаунистический (остракоды) анализы, проведено радиоуглеродное датирование. В строении осадочной толщи отражены разномасштабные палеогеографические события, включающие заложение палеовреза в нижнехвалынских отложениях, сопровождаемое размывом верхнехвалынских отложений, его развитие в условиях мангышлакской регрессии и последовательное заполнение в ходе голоценовой новокаспийской трансгрессии, протекавшей стадиально. Голоценовый возраст отложений, заполняющих палеопонижение, подтвержден радиоуглеродными датами - 8070 ± 110 и 7020 ± 140 кал. л. н. Палеонтологические данные свидетельствуют о чередовании спокойного и динамичного водного режимов и квазицикличность смены условий в бассейне от солоноватоводных к пресноводным до морских на этапе осадконакопления, соответствующем современным условиям на шельфе Северного Каспия.
Представлены результаты исследования современных аллювиальных отложений рек Дон и Кубань методом спорово-пыльцевого анализа, проведенного для уточнения методологических вопросов, в том числе перемещения пыльцы и спор текучими водами. Выяснено, что субрецентные спорово-пыльцевые спектры аллювиальных отложений, сформированные в результате сноса и перемешивания пыльцы водным и воздушным путем отражают не состав локальных группировок растений, расположенных по берегам рек, а дают характеристику регионального растительного покрова на зональном уровне. Согласно результатам анализа отложений реки Дон, дальность массового переноса пыльцы и спор водным путем незначительна, что хорошо прослеживается на границе лесостепной и степной зон. Обнаружено, что в спектрах лесостепной зоны содержание пыльцы древесных пород находится на уровне 50%, в степной зоне, в том числе в северной ее части, древесные породы составляют не более 30-35%. Представители лесных сообществ, такие как пыльца ели, споры плаунов и сфагновых мхов, в аллювиальных отложениях Дона, протекающего в степной зоне, а также в субрецентных осадках Азовского моря представлены единично и могут не учитываться при палеореконструкциях. Состав современных спектров отложений реки Кубани менее изменчив при продвижении от среднего течения к устью, наблюдается относительная стабильность содержания компонентов. При анализе распространения пыльцы элементов кавказской флоры на примере Fagus orientalis Lipsky и Carpinus caucasica Grossh. установлено, что пыльца представителей этих таксонов почти не переносится от высокогорных и среднегорных ландшафтов верховий Кубани водным путем. Проведенное сравнение содержания пыльцы и спор субрецентных спектров из аллювиальных осадков и донных отложений Азовского моря показало, что искажение состава фоссильных спектров за счет заноса материала водным путем минимально.
В статье приводятся результаты выполняемых работ по экологическому блоку комплексного рекреационного мониторинга на особо охраняемых природных территориях федерального значения согласно методическим рекомендациям, разработанным в 2021 г. коллективом авторов: В.В. Непомнящим, А.В. Завадской, В.П. Чижовой. Мониторинг состояния природных комплексов под воздействием туристско-рекреационной деятельности осуществлялся в зоне площадных и линейных воздействий на участке «Оглахты» заповедника «Хакасский». Основные результаты представлены за туристский сезон 2022 г. В настоящее время вся территория заповедного участка «Оглахты» занята преимущественно естественными природными комплексами. Линейное воздействие сконцентрировано в основном на дорогах патрулирования и проявляется в зоне пешего передвижения, площадное воздействие - в местах остановок у информационных баннеров и объектов показа на маршрутах, а также в местах хозяйственного использования территории. Рекомендации по эффективному развитию экологического туризма на участке «Оглахты» включают в себя обустройство наиболее популярного маршрута дополнительным настилом, а также перераспределение туристского потока на маршруты с достаточной емкостью, но меньшей посещаемостью, повысив их привлекательность для различных целевых аудиторий.
В статье предложена методика расчета объема выбросов в атмосферу от автономных систем отопления (АСО) индивидуальных жилых строений на основе оценки количества и площади подворий с применением данных дистанционного зондирования, объема, вида использованного топлива и типа источника сжигания по данным опросов населения и администраций муниципальных районов и поселений. Оценка значимости АСО как источника загрязнения атмосферы проведена на трех масштабных уровнях: по структуре потребления топлива выделены регионы России, в которых наибольшее значение имеют используемые населением теплоагрегаты; в разрезе муниципальных образований для Байкальской природной территории рассчитан объем выбросов от печного топлива, выделены типы территорий по структуре источников выбросов и для населенных пунктов проведена оценка роли АСО в загрязнении жилой зоны. Выявлено, что сжигание печного топлива является доминирующим источником выбросов (свыше 90%) для большей части Байкальского региона. Выбросы индивидуальных жилых строений при использовании угля и дров, в отличие от ТЭЦ и котельных, в большинстве случаев приводят к значительному воздействию на качество атмосферного воздуха (до 4,9 ПДК твердых частиц и диоксида серы), причем ареалы такого воздействия ограничены жилой зоной населенных пунктов. Стратегии снижения загрязнения определяются положением территории, характером расселения, уровнем доходов, сложившейся структурой потребления топлива, наличием разрабатываемых месторождений угля и другими факторами.
Постоянный дефицит пресной воды для питьевого и коммунально-бытового использования в Республике Калмыкия в последнее время ощущается критически остро. Это связано как с природным факторами (увеличивающейся засушливостью климата, ограниченностью запасов пресных поверхностных и подземных вод, отсутствием достаточно протяженных участков крупных рек с постоянным стоком), так и с изношенностью гидротехнических сооружений. Эксплуатация подземных вод на существующих месторождениях привела к их истощению и ухудшению качества, при этом крупные месторождения пресных и слабосолоноватых подземных вод юга Прикаспия невозможно использовать из-за повышенного содержания в них загрязняющих веществ. Ремонт старых и строительство новых водоводов от р. Волги требуют постоянных значительных финансовых вложений федерального уровня, поэтому в последние годы активно обсуждается новый способ увеличения запаса пресных вод, пригодных для питьевого водоснабжения, - искусственное пополнение подземных вод (ИППВ). В статье дается современная оценка водных ресурсов малоизученного поверхностного стока рек Калмыкии, рассмотрены возможность и целесообразность создания инфильтрационных бассейнов для пополнения запасов подземных вод, рассчитаны параметры и режим работы пяти планируемых бассейнов. Основным источником пресных поверхностных вод в Калмыкии являются реки Ергенинской возвышенности, среднемноголетний современный сток с восточного склона которой оценен в 0,120 км3/год, с западного - в 0,105 и с южного - в 0,045 км3/год. Установлены тенденции современного изменения гидрологического режима рек под влиянием изменений климата: сокращение годового стока и его внутригодовое перераспределение с сокращением весеннего половодья, незначительным ростом зимнего стока и выравниванием летнего меженного. Расчет режима функционирования планируемых инфильтрационных бассейнов позволил сделать следующие выводы: максимально возможный объем суммарной инфильтрации в них составит около 923 тыс. м3/год, что в 8,7 раза меньше современного водозабора из Троицкого и Баярнинского месторождений для водоснабжения населения республики; достаточно эффективная работа бассейнов возможна только при ежегодной очистке водохранилищ-отстойников от накапливающихся иловых отложений, в противном случае коэффициент фильтрации грунтов будет сокращаться, что приведет к снижению инфильтрационного питания в десятки раз. Таким образом, ИППВ могут быть только временной мерой, восполняющей снижение уровня грунтовых вод, до реконструкции и строительства новых водоводов от Волги для обеспечения водоснабжения Элисты и окрестностей питьевой водой приемлемого качества.
Издательство
- Издательство
- МГУ
- Регион
- Россия, Москва
- Почтовый адрес
- оссийская Федерация, 119991, Москва, Ленинские горы, д. 1
- Юр. адрес
- оссийская Федерация, 119991, Москва, Ленинские горы, д. 1
- ФИО
- Садовничий Виктор Антонович (РЕКТОР)
- E-mail адрес
- info@rector.msu.ru
- Контактный телефон
- +7 (495) 9391000
- Сайт
- https://msu.ru/