1. Balashov M.M. (2023). Analiz klyuchevykh napravlenii i predlozheniya po minimizatsii ekonomicheskikh posledstvii global’nogo energoperekhoda dlya krupnykh energoemkikh promyshlennykh potrebitelei elektricheskoi energii i moshchnosti. Strategicheskie resheniya i risk-menedzhment, 14(2): 164-179. https://doi.org/10.17747/2618-947X-2023-2-164-179.
2. Bogomolov A.V. (2022). Nekotorye aspekty obespecheniya innovatsionnogo razvitiya natsional’noi ekonomiki na osnove sovershenstvovaniya sistemy podgotovki inzhenernykh kadrov. Innovatsii, 2: 13-17.
3. Gitel’man L.D. (2011). Menedzhment - tvoya rabota. Sozdai nou-khau i deistvui! M., Infra-M.
4. Gitel’man L.D., Isaev A.P., Kozhevnikov M.V., Gavrilova T.B. (2022). Mezhdistsiplinarnye kompetentsii menedzherov dlya tekhnologicheskogo proryva. Strategicheskie resheniya i risk-menedzhment, 13(3): 182-198. https://doi.org/10.17747/2618-947X-2022-3-182-198.
5. Gitel’man L.D., Isaev A.P., Kozhevnikov M.V., Gavrilova T.B. (2023a). Innovatsionnye menedzhery dlya tekhnologicheskogo suvereniteta strany. Strategicheskie resheniya i risk-menedzhment, 14(2): 118-135. https://doi.org/10.17747/2618-947X-2023-2-118-135.
6. Gitel’man L.D., Kozhevnikov M.V. (2023). O neotlozhnykh izmeneniyakh v podgotovke menedzherov i inzhenerov dlya novoi energetiki. Energetik, 10: 3-11.
7. Gitel’man L.D., Kozhevnikov M.V., Ratnikov B.E. (2023b). Energeticheskii perekhod: rukovodstvo dlya realistov. M., Solon-Press.
8. Ermolov I.L. (2022). O napravleniyakh raboty po sovershenstvovaniyu podgotovki inzhenernykh kadrov v Rossii. Innovatsii, 2: 8-12.
9. Professionaly v konkurentsii za budushchee. Operezhayushchee obuchenie dlya liderstva v tsifrovoi industrii (2021). Pod red. L.D. Gitel’mana, A.P. Isaeva. M., Solon-Press.
10. Trachuk A.V., Linder N.V. (2023). Effekty tsifrovykh platform dlya promyshlennykh kompanii: empiricheskii analiz v usloviyakh vneshnego sanktsionnogo davleniya. Strategicheskie resheniya i risk-menedzhment, 14(2): 150-163. https://doi.org/10.17747/2618-947X-2023-2-150-163.
11. Ul’rikh D., Yung A. (2022). Novaya model’ organizatsii. Kak postroit’ bolee sil’nuyu i gibkuyu organizatsiyu. M., Bombora.
12. Axelrod R., Cohen M. (1999). Harnessing complexity: Organizational implications of a scientific frontier. New York, Simon and Schuster.
13. Bone M.A., Blackburn M.R., Rhodes D.H., Cohen D.N., Guerrero J.A. (2019). Transforming systems engineering through digital engineering. Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 16(4): 339-355. https://doi.org/10.1177/1548512917751873.
14. Checkland P. (1978). The origins and nature of “hard” systems thinking. Journal of Applied Systems Analysis, 5(2): 99-110.
15. Checkland P. (1999). Systems thinking, systems practice. New York, John Wiley & Sons.
16. Dubberly H. (2014). A systems literacy manifesto. Proceedings of RSD3, Third Symposium of Relating Systems Thinking to Design, 2014. http://openresearch.ocadu.ca/id/eprint/2058.
17. Hitchins D. (2009). What are the general principles applicable to systems? INCOSE Insight, 12(4): 59-63. https://doi.org/10.1002/inst.200912459.
18. Hybertson D. (2009). Model-oriented systems engineering science: A unifying framework for traditional and complex systems. Series in complex and enterprise systems engineering. Boston, Auerbach Publications.
19. Jackson W.S. (2016). Evaluation of resilience principles for engineered systems. Unpublished PhD, University of South Australia, Adelaide, Australia.
20. Kline S. (1995). Foundations of multidisciplinary thinking. Stanford, Stanford University Press.
21. Koestler A. (1967). The ghost in the machine. New York, Macmillan Stems.
22. Madni A., Jackson S. (2009). Towards a conceptual framework for resilience engineering. Institute of Electrical and Electronics Engineers (IEEE) Systems Journal, 3(2): 181-191.
23. Martin J. (2004). The seven samurai of systems engineering: Dealing with the complexity of 7 interrelated systems. In: Proceedings of the 14th Annual INCOSE International Symposium, 2004. https://incose.onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.2004.tb00509.x.
24. Rousseau D., Pennotti M., Brook P. (2022). Systems engineering’s evolving guidelines. https://drive.google.com/file/d/1JibL44sUh0ztefZQ5Rfy4kGiodXIy63n/view.
25. Sheard S., Cook S., Honour E., Hybertson D., Krupa J., McEver J., McKinney D., Ondrus P., Ryan A., Scheurer R., Singer J., Sparber J., White B. (2015). A complexity primer for systems engineers. https://www.incose.org/docs/default-source/ProductsPublications/a-complexity-primer-for-systems-engineers.pdf.
26. Sheard S.A., Mostashari A. (2009). Principles of complex systems for systems engineering. Systems Engineering, 12(4): 295-311.
27. Sillitto H.G. (2010). Design principles for ultra-large-scale systems. In: Proceedings of the 20th Annual INCOSE International Symposium, 2010. https://web.mst.edu/lib-circ/files/Special Collections/INCOSE2010/Design principles for Ultra-Large-Scale (ULS) SYstems.pdf.
28. Sweeney L.B. (2018). Food systems, climate systems, laundry systems: The time for systems literacy is now! https://thesystemsthinker.com/food-systems-climate-systems-laundry-systems-the-time-for-systems-literacy-is-now.
29. Verhoef P.C., Broekhuizen T., Bart Y., Bhattacharya A., Dong J.Q., Fabian N., Haenlein M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122: 889-901. https://doi.org/10.1016/j.jbusres.2019.09.022.
30. Weaver W. (1948). Science and complexity. American Science, 36: 536-544.